On elliptic problems with a nonlinearity depending on the gradient

We investigate the solvability of the Neumann problem \((1.1)\) involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side \(f\) of the equation belongs to \(L^m(\Omega )\) with \(1 \leq m \lt 2\).

Bibliographic Details
Main Author: Jan Chabrowski
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2009-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol29/4/art/opuscula_math_2929.pdf
id doaj-42cdb2e2386f4427ab78f3c1c03deded
record_format Article
spelling doaj-42cdb2e2386f4427ab78f3c1c03deded2020-11-24T22:37:35ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742009-01-01294377391http://dx.doi.org/10.7494/OpMath.2009.29.4.3772929On elliptic problems with a nonlinearity depending on the gradientJan Chabrowski0University of Queensland, Department of Mathematics, St. Lucia 4072, Qld, AustraliaWe investigate the solvability of the Neumann problem \((1.1)\) involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side \(f\) of the equation belongs to \(L^m(\Omega )\) with \(1 \leq m \lt 2\).http://www.opuscula.agh.edu.pl/vol29/4/art/opuscula_math_2929.pdfNeumann problemnonlinearity depending on the gradient\(L^1\) data
collection DOAJ
language English
format Article
sources DOAJ
author Jan Chabrowski
spellingShingle Jan Chabrowski
On elliptic problems with a nonlinearity depending on the gradient
Opuscula Mathematica
Neumann problem
nonlinearity depending on the gradient
\(L^1\) data
author_facet Jan Chabrowski
author_sort Jan Chabrowski
title On elliptic problems with a nonlinearity depending on the gradient
title_short On elliptic problems with a nonlinearity depending on the gradient
title_full On elliptic problems with a nonlinearity depending on the gradient
title_fullStr On elliptic problems with a nonlinearity depending on the gradient
title_full_unstemmed On elliptic problems with a nonlinearity depending on the gradient
title_sort on elliptic problems with a nonlinearity depending on the gradient
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2009-01-01
description We investigate the solvability of the Neumann problem \((1.1)\) involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side \(f\) of the equation belongs to \(L^m(\Omega )\) with \(1 \leq m \lt 2\).
topic Neumann problem
nonlinearity depending on the gradient
\(L^1\) data
url http://www.opuscula.agh.edu.pl/vol29/4/art/opuscula_math_2929.pdf
work_keys_str_mv AT janchabrowski onellipticproblemswithanonlinearitydependingonthegradient
_version_ 1725716455018725376