On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers

In this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nea...

Full description

Bibliographic Details
Main Authors: O.V. Gutik, A.S. Savchuk
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2019-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/2109
id doaj-42cbb690d4e7416394fc7ba2938596f4
record_format Article
spelling doaj-42cbb690d4e7416394fc7ba2938596f42020-11-25T03:32:59ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102019-12-0111229631010.15330/cmp.11.2.296-3102109On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integersO.V. Gutik0A.S. Savchuk1Ivan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineIn this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which consists of cofinite monotone partial bijections of $\mathbb{N}$ and $\mathscr{C}_{\mathbb{N}}$ be a subsemigroup of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which is generated by the partial shift $n\mapsto n+1$ and its inverse partial map. We show that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\!\nearrow}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. We construct a submonoid $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ with the following property: if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence $\mathfrak{C}$ on $S$ is a group congruence. We show that if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then $S$ is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is the minimum group congruence on $S$, is isomorphic to the additive group of integers. Also, we study topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which contain $\mathscr{C}_{\mathbb{N}}$ and embeddings of such semigroups into compact-like topological semigroups.https://journals.pnu.edu.ua/index.php/cmp/article/view/2109inverse semigroupisometrypartial bijectioncongruencebicyclic semigroupsemitopological semigrouptopological semigroupdiscrete topologyembeddingbohr compactification
collection DOAJ
language English
format Article
sources DOAJ
author O.V. Gutik
A.S. Savchuk
spellingShingle O.V. Gutik
A.S. Savchuk
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
Karpatsʹkì Matematičnì Publìkacìï
inverse semigroup
isometry
partial bijection
congruence
bicyclic semigroup
semitopological semigroup
topological semigroup
discrete topology
embedding
bohr compactification
author_facet O.V. Gutik
A.S. Savchuk
author_sort O.V. Gutik
title On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
title_short On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
title_full On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
title_fullStr On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
title_full_unstemmed On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
title_sort on inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2019-12-01
description In this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which consists of cofinite monotone partial bijections of $\mathbb{N}$ and $\mathscr{C}_{\mathbb{N}}$ be a subsemigroup of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which is generated by the partial shift $n\mapsto n+1$ and its inverse partial map. We show that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\!\nearrow}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. We construct a submonoid $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ with the following property: if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence $\mathfrak{C}$ on $S$ is a group congruence. We show that if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then $S$ is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is the minimum group congruence on $S$, is isomorphic to the additive group of integers. Also, we study topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which contain $\mathscr{C}_{\mathbb{N}}$ and embeddings of such semigroups into compact-like topological semigroups.
topic inverse semigroup
isometry
partial bijection
congruence
bicyclic semigroup
semitopological semigroup
topological semigroup
discrete topology
embedding
bohr compactification
url https://journals.pnu.edu.ua/index.php/cmp/article/view/2109
work_keys_str_mv AT ovgutik oninversesubmonoidsofthemonoidofalmostmonotoneinjectivecofinitepartialselfmapsofpositiveintegers
AT assavchuk oninversesubmonoidsofthemonoidofalmostmonotoneinjectivecofinitepartialselfmapsofpositiveintegers
_version_ 1724565396858601472