On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers
In this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nea...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2019-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/2109 |
id |
doaj-42cbb690d4e7416394fc7ba2938596f4 |
---|---|
record_format |
Article |
spelling |
doaj-42cbb690d4e7416394fc7ba2938596f42020-11-25T03:32:59ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102019-12-0111229631010.15330/cmp.11.2.296-3102109On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integersO.V. Gutik0A.S. Savchuk1Ivan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineIn this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which consists of cofinite monotone partial bijections of $\mathbb{N}$ and $\mathscr{C}_{\mathbb{N}}$ be a subsemigroup of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which is generated by the partial shift $n\mapsto n+1$ and its inverse partial map. We show that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\!\nearrow}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. We construct a submonoid $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ with the following property: if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence $\mathfrak{C}$ on $S$ is a group congruence. We show that if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then $S$ is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is the minimum group congruence on $S$, is isomorphic to the additive group of integers. Also, we study topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which contain $\mathscr{C}_{\mathbb{N}}$ and embeddings of such semigroups into compact-like topological semigroups.https://journals.pnu.edu.ua/index.php/cmp/article/view/2109inverse semigroupisometrypartial bijectioncongruencebicyclic semigroupsemitopological semigrouptopological semigroupdiscrete topologyembeddingbohr compactification |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O.V. Gutik A.S. Savchuk |
spellingShingle |
O.V. Gutik A.S. Savchuk On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers Karpatsʹkì Matematičnì Publìkacìï inverse semigroup isometry partial bijection congruence bicyclic semigroup semitopological semigroup topological semigroup discrete topology embedding bohr compactification |
author_facet |
O.V. Gutik A.S. Savchuk |
author_sort |
O.V. Gutik |
title |
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
title_short |
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
title_full |
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
title_fullStr |
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
title_full_unstemmed |
On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
title_sort |
on inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2019-12-01 |
description |
In this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which consists of cofinite monotone partial bijections of $\mathbb{N}$ and $\mathscr{C}_{\mathbb{N}}$ be a subsemigroup of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which is generated by the partial shift $n\mapsto n+1$ and its inverse partial map. We show that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\!\nearrow}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. We construct a submonoid $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ with the following property: if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence $\mathfrak{C}$ on $S$ is a group congruence. We show that if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then $S$ is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is the minimum group congruence on $S$, is isomorphic to the additive group of integers. Also, we study topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which contain $\mathscr{C}_{\mathbb{N}}$ and embeddings of such semigroups into compact-like topological semigroups. |
topic |
inverse semigroup isometry partial bijection congruence bicyclic semigroup semitopological semigroup topological semigroup discrete topology embedding bohr compactification |
url |
https://journals.pnu.edu.ua/index.php/cmp/article/view/2109 |
work_keys_str_mv |
AT ovgutik oninversesubmonoidsofthemonoidofalmostmonotoneinjectivecofinitepartialselfmapsofpositiveintegers AT assavchuk oninversesubmonoidsofthemonoidofalmostmonotoneinjectivecofinitepartialselfmapsofpositiveintegers |
_version_ |
1724565396858601472 |