Experimental-numerical analysis of added resistance to container ships under presence of wind-wave loads.

Experimental and numerical analyses performed on a scaled-down model of a 1900TEU container-ship are reported herein. Wind-tunnel and towing-tank experiments along with computational-fluid-dynamic simulations were performed to obtain (1) wind-load coefficients for superstructure of container ship at...

Full description

Bibliographic Details
Main Authors: Wei Wang, Tiecheng Wu, Dagang Zhao, Chunyu Guo, Wanzhen Luo, Yongjie Pang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0221453
Description
Summary:Experimental and numerical analyses performed on a scaled-down model of a 1900TEU container-ship are reported herein. Wind-tunnel and towing-tank experiments along with computational-fluid-dynamic simulations were performed to obtain (1) wind-load coefficients for superstructure of container ship at different wind angles under full-load operating conditions; (2) wave resistance of the model sans the superstructure under different wave conditions; and (3) combined wind-wave resistance of the model in the head waves coupled with a fluctuating wind. Wind-tunnel experiments were first performed to determine wind-load coefficients concerning of the superstructure at different wind angles. Subsequently, the obtained wind-load coefficients from the wind tunnel test were compared against numerical and empirically obtained results to validate the applicability of the applied numerical methods. Next, the wave-induced resistance to ship motion was investigated via a series of towing-tank experiments and numerical simulations to analyze the resistance and motion of ship under wavy conditions. Finally, characteristics of the added resistance to ship motion under conditions of combined wind-wave load were analyzed, and the coupling between ship motion and combined wind-wave load was used to investigate the changes in added resistance under different load scenarios. The results reveal that combined wind-wave load causes the resistance to ship motion to exceed the algebraic sum of the corresponding resistances under standalone wind- and wave-load conditions. The additional resistance was observed to be a combined manifestation of resistances induced by ship motion and wave-parameter alterations.
ISSN:1932-6203