Mixture density network estimation of continuous variable maximum likelihood using discrete training samples
Abstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-07-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-09469-y |
id |
doaj-42b642e65c024959bb56db60384144f4 |
---|---|
record_format |
Article |
spelling |
doaj-42b642e65c024959bb56db60384144f42021-08-01T11:12:41ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-07-018171910.1140/epjc/s10052-021-09469-yMixture density network estimation of continuous variable maximum likelihood using discrete training samplesCharles Burton0Spencer Stubbs1Peter Onyisi2Department of Physics, University of TexasDepartment of Physics, University of TexasDepartment of Physics, University of TexasAbstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$ θ . In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.https://doi.org/10.1140/epjc/s10052-021-09469-y |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Charles Burton Spencer Stubbs Peter Onyisi |
spellingShingle |
Charles Burton Spencer Stubbs Peter Onyisi Mixture density network estimation of continuous variable maximum likelihood using discrete training samples European Physical Journal C: Particles and Fields |
author_facet |
Charles Burton Spencer Stubbs Peter Onyisi |
author_sort |
Charles Burton |
title |
Mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
title_short |
Mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
title_full |
Mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
title_fullStr |
Mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
title_full_unstemmed |
Mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
title_sort |
mixture density network estimation of continuous variable maximum likelihood using discrete training samples |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2021-07-01 |
description |
Abstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$ θ . In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue. |
url |
https://doi.org/10.1140/epjc/s10052-021-09469-y |
work_keys_str_mv |
AT charlesburton mixturedensitynetworkestimationofcontinuousvariablemaximumlikelihoodusingdiscretetrainingsamples AT spencerstubbs mixturedensitynetworkestimationofcontinuousvariablemaximumlikelihoodusingdiscretetrainingsamples AT peteronyisi mixturedensitynetworkestimationofcontinuousvariablemaximumlikelihoodusingdiscretetrainingsamples |
_version_ |
1721246187107909632 |