Mixture density network estimation of continuous variable maximum likelihood using discrete training samples
Abstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-07-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-09469-y |
Summary: | Abstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$ θ . In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue. |
---|---|
ISSN: | 1434-6044 1434-6052 |