A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons
<p>Abstract</p> <p>Background</p> <p>The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSC...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-09-01
|
Series: | BMC Neuroscience |
Online Access: | http://www.biomedcentral.com/1471-2202/10/124 |
id |
doaj-42b1130570fb4baea7f98d33f7e2566c |
---|---|
record_format |
Article |
spelling |
doaj-42b1130570fb4baea7f98d33f7e2566c2020-11-24T21:04:37ZengBMCBMC Neuroscience1471-22022009-09-0110112410.1186/1471-2202-10-124A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neuronsHofmann FrankWiegert J SimonBading HilmarBengtson C Peter<p>Abstract</p> <p>Background</p> <p>The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs) are also increased in amplitude and/or frequency during long-term potentiation (LTP), it is not known how long such changes persist or whether gene transcription is required.</p> <p>Results</p> <p>We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABA<sub>A</sub>-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction.</p> <p>Conclusion</p> <p>These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic insight to link gene candidates already identified by gene chip analysis to long lasting plasticity in this in vitro model.</p> http://www.biomedcentral.com/1471-2202/10/124 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hofmann Frank Wiegert J Simon Bading Hilmar Bengtson C Peter |
spellingShingle |
Hofmann Frank Wiegert J Simon Bading Hilmar Bengtson C Peter A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons BMC Neuroscience |
author_facet |
Hofmann Frank Wiegert J Simon Bading Hilmar Bengtson C Peter |
author_sort |
Hofmann Frank |
title |
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons |
title_short |
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons |
title_full |
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons |
title_fullStr |
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons |
title_full_unstemmed |
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons |
title_sort |
transcription-dependent increase in miniature epsc frequency accompanies late-phase plasticity in cultured hippocampal neurons |
publisher |
BMC |
series |
BMC Neuroscience |
issn |
1471-2202 |
publishDate |
2009-09-01 |
description |
<p>Abstract</p> <p>Background</p> <p>The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs) are also increased in amplitude and/or frequency during long-term potentiation (LTP), it is not known how long such changes persist or whether gene transcription is required.</p> <p>Results</p> <p>We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABA<sub>A</sub>-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction.</p> <p>Conclusion</p> <p>These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic insight to link gene candidates already identified by gene chip analysis to long lasting plasticity in this in vitro model.</p> |
url |
http://www.biomedcentral.com/1471-2202/10/124 |
work_keys_str_mv |
AT hofmannfrank atranscriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT wiegertjsimon atranscriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT badinghilmar atranscriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT bengtsoncpeter atranscriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT hofmannfrank transcriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT wiegertjsimon transcriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT badinghilmar transcriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons AT bengtsoncpeter transcriptiondependentincreaseinminiatureepscfrequencyaccompanieslatephaseplasticityinculturedhippocampalneurons |
_version_ |
1716770471230308352 |