Microseismic Signal Classification Based on Artificial Neural Networks
The classification of multichannel microseismic waveform is essential for real-time monitoring and hazard prediction. The accuracy and efficiency could not be guaranteed by manual identification. Thus, based on 37310 waveform data of Junde Coal Mine, eight features of statistics, spectrum, and wavef...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2021/6697948 |