Exponential networks and representations of quivers
Abstract We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related model...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP08(2017)063 |
id |
doaj-428dd7f77b8b4664b684c0830a14eb95 |
---|---|
record_format |
Article |
spelling |
doaj-428dd7f77b8b4664b684c0830a14eb952020-11-24T21:00:19ZengSpringerOpenJournal of High Energy Physics1029-84792017-08-012017816810.1007/JHEP08(2017)063Exponential networks and representations of quiversRichard Eager0Sam Alexandre Selmani1Johannes Walcher2Mathematical Institute, Heidelberg UniversityMathematical Institute, Heidelberg UniversityMathematical Institute, Heidelberg UniversityAbstract We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The differential is multi-valued on the covering curve and features a new type of logarithmic singularity in order to account for D0-branes and non-compact D4-branes, respectively. We describe local rules for the three-way junctions of BPS trajectories relative to a particular framing of the curve. We reproduce BPS quivers of local geometries and illustrate the wall-crossing of finite-mass bound states in several new examples. We describe first steps toward understanding the spectrum of framed BPS states in terms of such “exponential networks”.http://link.springer.com/article/10.1007/JHEP08(2017)063D-branesDifferential and Algebraic GeometryTopological Strings |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Richard Eager Sam Alexandre Selmani Johannes Walcher |
spellingShingle |
Richard Eager Sam Alexandre Selmani Johannes Walcher Exponential networks and representations of quivers Journal of High Energy Physics D-branes Differential and Algebraic Geometry Topological Strings |
author_facet |
Richard Eager Sam Alexandre Selmani Johannes Walcher |
author_sort |
Richard Eager |
title |
Exponential networks and representations of quivers |
title_short |
Exponential networks and representations of quivers |
title_full |
Exponential networks and representations of quivers |
title_fullStr |
Exponential networks and representations of quivers |
title_full_unstemmed |
Exponential networks and representations of quivers |
title_sort |
exponential networks and representations of quivers |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2017-08-01 |
description |
Abstract We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The differential is multi-valued on the covering curve and features a new type of logarithmic singularity in order to account for D0-branes and non-compact D4-branes, respectively. We describe local rules for the three-way junctions of BPS trajectories relative to a particular framing of the curve. We reproduce BPS quivers of local geometries and illustrate the wall-crossing of finite-mass bound states in several new examples. We describe first steps toward understanding the spectrum of framed BPS states in terms of such “exponential networks”. |
topic |
D-branes Differential and Algebraic Geometry Topological Strings |
url |
http://link.springer.com/article/10.1007/JHEP08(2017)063 |
work_keys_str_mv |
AT richardeager exponentialnetworksandrepresentationsofquivers AT samalexandreselmani exponentialnetworksandrepresentationsofquivers AT johanneswalcher exponentialnetworksandrepresentationsofquivers |
_version_ |
1716780157203644416 |