Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods

We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain mo...

Full description

Bibliographic Details
Main Authors: Kin Wei Ng, Ahmad Rohanin
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2012/734070
Description
Summary:We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain model. The monodomain model consists of a parabolic partial differential equation coupled to a system of nonlinear ordinary differential equations, which has been widely used for simulating cardiac electrical activity. Our control objective is to dampen the excitation wavefront using optimal applied extracellular current. Two hybrid conjugate gradient methods are employed for computing the optimal applied extracellular current, namely, the Hestenes-Stiefel-Dai-Yuan (HS-DY) method and the Liu-Storey-Conjugate-Descent (LS-CD) method. Our experiment results show that the excitation wavefronts are successfully dampened out when these methods are used. Our experiment results also show that the hybrid conjugate gradient methods are superior to the classical conjugate gradient methods when Armijo line search is used.
ISSN:1024-123X
1563-5147