Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments

The Rayleigh equation with two deviating arguments x′′(t)+f(x'(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t) is studied. By using Leray-Schauder index theorem and Leray-Schauder fixed point theorem, we obtain some new results on the existence of periodic solutions, especially for the existence of...

Full description

Bibliographic Details
Main Author: Meiqiang Feng
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/414901
id doaj-426269aae0d045a99457bf3da1bd8e14
record_format Article
spelling doaj-426269aae0d045a99457bf3da1bd8e142020-11-24T23:19:46ZengHindawi LimitedJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/414901414901Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating ArgumentsMeiqiang Feng0School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, ChinaThe Rayleigh equation with two deviating arguments x′′(t)+f(x'(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t) is studied. By using Leray-Schauder index theorem and Leray-Schauder fixed point theorem, we obtain some new results on the existence of periodic solutions, especially for the existence of nontrivial periodic solutions to this equation. The results are illustrated with two examples, which cannot be handled using the existing results.http://dx.doi.org/10.1155/2013/414901
collection DOAJ
language English
format Article
sources DOAJ
author Meiqiang Feng
spellingShingle Meiqiang Feng
Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
Journal of Function Spaces and Applications
author_facet Meiqiang Feng
author_sort Meiqiang Feng
title Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
title_short Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
title_full Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
title_fullStr Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
title_full_unstemmed Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
title_sort periodic solutions and nontrivial periodic solutions for a class of rayleigh-type equation with two deviating arguments
publisher Hindawi Limited
series Journal of Function Spaces and Applications
issn 0972-6802
1758-4965
publishDate 2013-01-01
description The Rayleigh equation with two deviating arguments x′′(t)+f(x'(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t) is studied. By using Leray-Schauder index theorem and Leray-Schauder fixed point theorem, we obtain some new results on the existence of periodic solutions, especially for the existence of nontrivial periodic solutions to this equation. The results are illustrated with two examples, which cannot be handled using the existing results.
url http://dx.doi.org/10.1155/2013/414901
work_keys_str_mv AT meiqiangfeng periodicsolutionsandnontrivialperiodicsolutionsforaclassofrayleightypeequationwithtwodeviatingarguments
_version_ 1725577052309946368