A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization
This paper introduces a new chaotic system with two circles of equilibrium points. The dynamical properties of the proposed dynamical system are investigated through evaluating Lyapunov exponents, bifurcation diagram and multistability. The qualitative study shows that the new system exhibits coexis...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/8/11/1211 |
id |
doaj-425fc87676f64e0eab9742a3ac45bf15 |
---|---|
record_format |
Article |
spelling |
doaj-425fc87676f64e0eab9742a3ac45bf152020-11-25T03:25:11ZengMDPI AGElectronics2079-92922019-10-01811121110.3390/electronics8111211electronics8111211A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA RealizationAceng Sambas0Sundarapandian Vaidyanathan1Esteban Tlelo-Cuautle2Sen Zhang3Omar Guillen-Fernandez4Sukono5Yuyun Hidayat6Gugun Gundara7Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, IndonesiaResearch and Development Centre, Vel Tech University, Chennai 600062, IndiaDepartment of Electronics, National Institute of Astrophysics, Optics and Electronics (INAOE), Tonantzintla Puebla 72840, MexicoSchool of Physics and Opotoelectric Engineering, Xiangtan University, Xiangtan 411105, ChinaDepartment of Electronics, National Institute of Astrophysics, Optics and Electronics (INAOE), Tonantzintla Puebla 72840, MexicoDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, IndonesiaDepartment of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, IndonesiaDepartment of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, IndonesiaThis paper introduces a new chaotic system with two circles of equilibrium points. The dynamical properties of the proposed dynamical system are investigated through evaluating Lyapunov exponents, bifurcation diagram and multistability. The qualitative study shows that the new system exhibits coexisting periodic and chaotic attractors for different values of parameters. The new chaotic system is implemented in both analog and digital electronics. In the former case, we introduce the analog circuit of the proposed chaotic system with two circles of equilibrium points using amplifiers, which is simulated in MultiSIM software, version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB. In addition, we perform the digital implementation of the new chaotic system using field-programmable gate arrays (FPGA), the experimental observations of the attractors of which confirm its suitability to generate chaotic behavior.https://www.mdpi.com/2079-9292/8/11/1211chaotic systemclose curve equilibriummultistabilityelectronic circuitfpga |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aceng Sambas Sundarapandian Vaidyanathan Esteban Tlelo-Cuautle Sen Zhang Omar Guillen-Fernandez Sukono Yuyun Hidayat Gugun Gundara |
spellingShingle |
Aceng Sambas Sundarapandian Vaidyanathan Esteban Tlelo-Cuautle Sen Zhang Omar Guillen-Fernandez Sukono Yuyun Hidayat Gugun Gundara A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization Electronics chaotic system close curve equilibrium multistability electronic circuit fpga |
author_facet |
Aceng Sambas Sundarapandian Vaidyanathan Esteban Tlelo-Cuautle Sen Zhang Omar Guillen-Fernandez Sukono Yuyun Hidayat Gugun Gundara |
author_sort |
Aceng Sambas |
title |
A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization |
title_short |
A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization |
title_full |
A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization |
title_fullStr |
A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization |
title_full_unstemmed |
A Novel Chaotic System with Two Circles of Equilibrium Points: Multistability, Electronic Circuit and FPGA Realization |
title_sort |
novel chaotic system with two circles of equilibrium points: multistability, electronic circuit and fpga realization |
publisher |
MDPI AG |
series |
Electronics |
issn |
2079-9292 |
publishDate |
2019-10-01 |
description |
This paper introduces a new chaotic system with two circles of equilibrium points. The dynamical properties of the proposed dynamical system are investigated through evaluating Lyapunov exponents, bifurcation diagram and multistability. The qualitative study shows that the new system exhibits coexisting periodic and chaotic attractors for different values of parameters. The new chaotic system is implemented in both analog and digital electronics. In the former case, we introduce the analog circuit of the proposed chaotic system with two circles of equilibrium points using amplifiers, which is simulated in MultiSIM software, version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB. In addition, we perform the digital implementation of the new chaotic system using field-programmable gate arrays (FPGA), the experimental observations of the attractors of which confirm its suitability to generate chaotic behavior. |
topic |
chaotic system close curve equilibrium multistability electronic circuit fpga |
url |
https://www.mdpi.com/2079-9292/8/11/1211 |
work_keys_str_mv |
AT acengsambas anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT sundarapandianvaidyanathan anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT estebantlelocuautle anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT senzhang anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT omarguillenfernandez anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT sukono anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT yuyunhidayat anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT gugungundara anovelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT acengsambas novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT sundarapandianvaidyanathan novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT estebantlelocuautle novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT senzhang novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT omarguillenfernandez novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT sukono novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT yuyunhidayat novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization AT gugungundara novelchaoticsystemwithtwocirclesofequilibriumpointsmultistabilityelectroniccircuitandfpgarealization |
_version_ |
1724598431873236992 |