Synthesis of Novel pH-Tunable Thermoresponsive Hydroxyl-Terminated Hyperbranched Polyether

In this study, a new pH-tunable thermoresponsive hydroxyl-terminated hyperbranched polyether (HTHP 2) was successfully prepared via a one-pot cationic polymerization technique and postmodification. In the first step, hydroxyl-terminated hyperbranched polyether containing double bonds (HTHP 1) were s...

Full description

Bibliographic Details
Main Authors: Xiuzhong Zhu, Xiao Duan, Ting Bai, Xuan Zhang, Tong Wang, Tao Cao, Xiaodong Fan
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/11/5/895
Description
Summary:In this study, a new pH-tunable thermoresponsive hydroxyl-terminated hyperbranched polyether (HTHP 2) was successfully prepared via a one-pot cationic polymerization technique and postmodification. In the first step, hydroxyl-terminated hyperbranched polyether containing double bonds (HTHP 1) were synthesized. Then, through thiol-ene “click„ reaction, pH-responsive carboxyl groups were introduced to the target polymer of HTHP 2. The products were characterized via Fourier-transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), and size-exclusion chromatography-multiangle laser light scattering (SEC-MALLS). Moreover, dynamic light scattering (DLS) and UV–Vis spectroscopy was employed to study the pH- and thermoresponsiveness in detail. Results showed that HTHP 2 possessed typical pH-controllable thermoresponsive behavior. By regulating the solution pH value range 3.0–5.4, LCST of HTHP 2 could be changed from 12.8 to 68.0 °C. Meanwhile, the cell viabilities of A549 cells were more than 80% for in vitro cytotoxicity tests of HTHP 2, suggested that HTHP 2 polymers are of good biocompatibility for up to 24 h.
ISSN:2073-4360