The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets

BackgroundSurveillance plays a vital role in disease detection, but traditional methods of collecting patient data, reporting to health officials, and compiling reports are costly and time consuming. In recent years, syndromic surveillance tools have expanded and researchers...

Full description

Bibliographic Details
Main Authors: Nagel, Anna C, Tsou, Ming-Hsiang, Spitzberg, Brian H, An, Li, Gawron, J Mark, Gupta, Dipak K, Yang, Jiue-An, Han, Su, Peddecord, K Michael, Lindsay, Suzanne, Sawyer, Mark H
Format: Article
Language:English
Published: JMIR Publications 2013-10-01
Series:Journal of Medical Internet Research
Online Access:http://www.jmir.org/2013/10/e237/
id doaj-42594e3b218b4614b2531f6db0935e17
record_format Article
spelling doaj-42594e3b218b4614b2531f6db0935e172021-04-02T21:36:01ZengJMIR PublicationsJournal of Medical Internet Research1438-88712013-10-011510e23710.2196/jmir.2705The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using TweetsNagel, Anna CTsou, Ming-HsiangSpitzberg, Brian HAn, LiGawron, J MarkGupta, Dipak KYang, Jiue-AnHan, SuPeddecord, K MichaelLindsay, SuzanneSawyer, Mark H BackgroundSurveillance plays a vital role in disease detection, but traditional methods of collecting patient data, reporting to health officials, and compiling reports are costly and time consuming. In recent years, syndromic surveillance tools have expanded and researchers are able to exploit the vast amount of data available in real time on the Internet at minimal cost. Many data sources for infoveillance exist, but this study focuses on status updates (tweets) from the Twitter microblogging website. ObjectiveThe aim of this study was to explore the interaction between cyberspace message activity, measured by keyword-specific tweets, and real world occurrences of influenza and pertussis. Tweets were aggregated by week and compared to weekly influenza-like illness (ILI) and weekly pertussis incidence. The potential effect of tweet type was analyzed by categorizing tweets into 4 categories: nonretweets, retweets, tweets with a URL Web address, and tweets without a URL Web address. MethodsTweets were collected within a 17-mile radius of 11 US cities chosen on the basis of population size and the availability of disease data. Influenza analysis involved all 11 cities. Pertussis analysis was based on the 2 cities nearest to the Washington State pertussis outbreak (Seattle, WA and Portland, OR). Tweet collection resulted in 161,821 flu, 6174 influenza, 160 pertussis, and 1167 whooping cough tweets. The correlation coefficients between tweets or subgroups of tweets and disease occurrence were calculated and trends were presented graphically. ResultsCorrelations between weekly aggregated tweets and disease occurrence varied greatly, but were relatively strong in some areas. In general, correlation coefficients were stronger in the flu analysis compared to the pertussis analysis. Within each analysis, flu tweets were more strongly correlated with ILI rates than influenza tweets, and whooping cough tweets correlated more strongly with pertussis incidence than pertussis tweets. Nonretweets correlated more with disease occurrence than retweets, and tweets without a URL Web address correlated better with actual incidence than those with a URL Web address primarily for the flu tweets. ConclusionsThis study demonstrates that not only does keyword choice play an important role in how well tweets correlate with disease occurrence, but that the subgroup of tweets used for analysis is also important. This exploratory work shows potential in the use of tweets for infoveillance, but continued efforts are needed to further refine research methods in this field.http://www.jmir.org/2013/10/e237/
collection DOAJ
language English
format Article
sources DOAJ
author Nagel, Anna C
Tsou, Ming-Hsiang
Spitzberg, Brian H
An, Li
Gawron, J Mark
Gupta, Dipak K
Yang, Jiue-An
Han, Su
Peddecord, K Michael
Lindsay, Suzanne
Sawyer, Mark H
spellingShingle Nagel, Anna C
Tsou, Ming-Hsiang
Spitzberg, Brian H
An, Li
Gawron, J Mark
Gupta, Dipak K
Yang, Jiue-An
Han, Su
Peddecord, K Michael
Lindsay, Suzanne
Sawyer, Mark H
The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
Journal of Medical Internet Research
author_facet Nagel, Anna C
Tsou, Ming-Hsiang
Spitzberg, Brian H
An, Li
Gawron, J Mark
Gupta, Dipak K
Yang, Jiue-An
Han, Su
Peddecord, K Michael
Lindsay, Suzanne
Sawyer, Mark H
author_sort Nagel, Anna C
title The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
title_short The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
title_full The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
title_fullStr The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
title_full_unstemmed The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets
title_sort complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets
publisher JMIR Publications
series Journal of Medical Internet Research
issn 1438-8871
publishDate 2013-10-01
description BackgroundSurveillance plays a vital role in disease detection, but traditional methods of collecting patient data, reporting to health officials, and compiling reports are costly and time consuming. In recent years, syndromic surveillance tools have expanded and researchers are able to exploit the vast amount of data available in real time on the Internet at minimal cost. Many data sources for infoveillance exist, but this study focuses on status updates (tweets) from the Twitter microblogging website. ObjectiveThe aim of this study was to explore the interaction between cyberspace message activity, measured by keyword-specific tweets, and real world occurrences of influenza and pertussis. Tweets were aggregated by week and compared to weekly influenza-like illness (ILI) and weekly pertussis incidence. The potential effect of tweet type was analyzed by categorizing tweets into 4 categories: nonretweets, retweets, tweets with a URL Web address, and tweets without a URL Web address. MethodsTweets were collected within a 17-mile radius of 11 US cities chosen on the basis of population size and the availability of disease data. Influenza analysis involved all 11 cities. Pertussis analysis was based on the 2 cities nearest to the Washington State pertussis outbreak (Seattle, WA and Portland, OR). Tweet collection resulted in 161,821 flu, 6174 influenza, 160 pertussis, and 1167 whooping cough tweets. The correlation coefficients between tweets or subgroups of tweets and disease occurrence were calculated and trends were presented graphically. ResultsCorrelations between weekly aggregated tweets and disease occurrence varied greatly, but were relatively strong in some areas. In general, correlation coefficients were stronger in the flu analysis compared to the pertussis analysis. Within each analysis, flu tweets were more strongly correlated with ILI rates than influenza tweets, and whooping cough tweets correlated more strongly with pertussis incidence than pertussis tweets. Nonretweets correlated more with disease occurrence than retweets, and tweets without a URL Web address correlated better with actual incidence than those with a URL Web address primarily for the flu tweets. ConclusionsThis study demonstrates that not only does keyword choice play an important role in how well tweets correlate with disease occurrence, but that the subgroup of tweets used for analysis is also important. This exploratory work shows potential in the use of tweets for infoveillance, but continued efforts are needed to further refine research methods in this field.
url http://www.jmir.org/2013/10/e237/
work_keys_str_mv AT nagelannac thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT tsouminghsiang thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT spitzbergbrianh thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT anli thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT gawronjmark thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT guptadipakk thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT yangjiuean thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT hansu thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT peddecordkmichael thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT lindsaysuzanne thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT sawyermarkh thecomplexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT nagelannac complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT tsouminghsiang complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT spitzbergbrianh complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT anli complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT gawronjmark complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT guptadipakk complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT yangjiuean complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT hansu complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT peddecordkmichael complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT lindsaysuzanne complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
AT sawyermarkh complexrelationshipofrealspaceeventsandmessagesincyberspacecasestudyofinfluenzaandpertussisusingtweets
_version_ 1721545048433098752