Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-07652-6 |
id |
doaj-4253a943492247b28ad5cd46f32d93b3 |
---|---|
record_format |
Article |
spelling |
doaj-4253a943492247b28ad5cd46f32d93b32021-05-11T10:24:26ZengNature Publishing GroupNature Communications2041-17232018-12-019111010.1038/s41467-018-07652-6Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic modelsDavid Heckmann0Colton J. Lloyd1Nathan Mih2Yuanchi Ha3Daniel C. Zielinski4Zachary B. Haiman5Abdelmoneim Amer Desouki6Martin J. Lercher7Bernhard O. Palsson8Department of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoInstitute for Computer Science and Department of Biology, Heinrich Heine UniversityInstitute for Computer Science and Department of Biology, Heinrich Heine UniversityDepartment of Bioengineering, University of California, San DiegoExperimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.https://doi.org/10.1038/s41467-018-07652-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson |
spellingShingle |
David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models Nature Communications |
author_facet |
David Heckmann Colton J. Lloyd Nathan Mih Yuanchi Ha Daniel C. Zielinski Zachary B. Haiman Abdelmoneim Amer Desouki Martin J. Lercher Bernhard O. Palsson |
author_sort |
David Heckmann |
title |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_short |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_full |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_fullStr |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_full_unstemmed |
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
title_sort |
machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2018-12-01 |
description |
Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy. |
url |
https://doi.org/10.1038/s41467-018-07652-6 |
work_keys_str_mv |
AT davidheckmann machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT coltonjlloyd machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT nathanmih machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT yuanchiha machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT danielczielinski machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT zacharybhaiman machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT abdelmoneimamerdesouki machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT martinjlercher machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels AT bernhardopalsson machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels |
_version_ |
1721448266834378752 |