Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models

Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.

Bibliographic Details
Main Authors: David Heckmann, Colton J. Lloyd, Nathan Mih, Yuanchi Ha, Daniel C. Zielinski, Zachary B. Haiman, Abdelmoneim Amer Desouki, Martin J. Lercher, Bernhard O. Palsson
Format: Article
Language:English
Published: Nature Publishing Group 2018-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-07652-6
id doaj-4253a943492247b28ad5cd46f32d93b3
record_format Article
spelling doaj-4253a943492247b28ad5cd46f32d93b32021-05-11T10:24:26ZengNature Publishing GroupNature Communications2041-17232018-12-019111010.1038/s41467-018-07652-6Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic modelsDavid Heckmann0Colton J. Lloyd1Nathan Mih2Yuanchi Ha3Daniel C. Zielinski4Zachary B. Haiman5Abdelmoneim Amer Desouki6Martin J. Lercher7Bernhard O. Palsson8Department of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoInstitute for Computer Science and Department of Biology, Heinrich Heine UniversityInstitute for Computer Science and Department of Biology, Heinrich Heine UniversityDepartment of Bioengineering, University of California, San DiegoExperimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.https://doi.org/10.1038/s41467-018-07652-6
collection DOAJ
language English
format Article
sources DOAJ
author David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
spellingShingle David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
Nature Communications
author_facet David Heckmann
Colton J. Lloyd
Nathan Mih
Yuanchi Ha
Daniel C. Zielinski
Zachary B. Haiman
Abdelmoneim Amer Desouki
Martin J. Lercher
Bernhard O. Palsson
author_sort David Heckmann
title Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_short Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_full Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_fullStr Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_full_unstemmed Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
title_sort machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-12-01
description Experimental data on enzyme turnover numbers is sparse and noisy. Here, the authors use machine learning to successfully predict enzyme turnover numbers for E. coli, and show that using these to parameterize mechanistic genome-scale models enhances their predictive accuracy.
url https://doi.org/10.1038/s41467-018-07652-6
work_keys_str_mv AT davidheckmann machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT coltonjlloyd machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT nathanmih machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT yuanchiha machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT danielczielinski machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT zacharybhaiman machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT abdelmoneimamerdesouki machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT martinjlercher machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
AT bernhardopalsson machinelearningappliedtoenzymeturnovernumbersrevealsproteinstructuralcorrelatesandimprovesmetabolicmodels
_version_ 1721448266834378752