Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz) and is located in St. Santin, France (44°39’ N, 2°12’ E). A field campaign involving high resolution balloon meas...

Full description

Bibliographic Details
Main Authors: J. Dole, R. Wilson, F. Dalaudier, C. Sidi
Format: Article
Language:English
Published: Copernicus Publications 2001-08-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/19/945/2001/angeo-19-945-2001.pdf
Description
Summary:Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz) and is located in St. Santin, France (44°39’ N, 2°12’ E). A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, <i>R<sub>f</sub> </i>.<br><br><b>Key words. </b>Meteorology and atmospheric dynamics (turbulence) – Radio science (remote sensing)
ISSN:0992-7689
1432-0576