Experimental Validation of the DSTATCOM Based on SiC-MOSFET Multilevel Converter for Reactive Power Compensation
Power quality problems are associated, among other things, with the reactive power generated at the AC side in distribution systems. In this regard, the three-phase distribution static compensator is becoming a viable alternative in order to achieve reactive power compensation or in other words to o...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
International Institute of Informatics and Cybernetics
2020-10-01
|
Series: | Journal of Systemics, Cybernetics and Informatics |
Subjects: | |
Online Access: | http://www.iiisci.org/Journal/CV$/sci/pdfs/SA220QF20.pdf
|
Summary: | Power quality problems are associated, among other things, with the reactive power generated at the AC side in distribution systems. In this regard, the three-phase distribution static compensator is becoming a viable alternative in order to achieve reactive power compensation or in other words to obtain a unity power factor. This paper introduces the experimental validation of the distribution static compensator based on a 7-level cascade H-Bridge converter. The experimental test bench is based on the silicon carbide metal-oxide-semiconductor field-effect transistor devices. The results are obtained by using a fixed switching frequency model-based predictive controller based on a pulse-width modulation strategy. The proposed design is implemented to mitigate power quality issues induced by reactive load and experimental results are provided to show the performance of the proposed controller. |
---|---|
ISSN: | 1690-4524 |