Modelling diatom life forms and ecological guilds for river biomonitoring

Biomonitoring is central to the European Union's Water Framework Directive (WFD) and to the French water and aquatic environmental law, but most diatom indices do not separate different anthropogenic impacts. To address this gap, the effect of water chemistry on diatom ecological guilds and lif...

Full description

Bibliographic Details
Main Authors: Marcel Rémy, Berthon Vincent, Castets Virginie, Rimet Frédéric, Thiers Amélie, Labat Frédéric, Fontan Bruno
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:Knowledge and Management of Aquatic Ecosystems
Subjects:
Online Access:https://doi.org/10.1051/kmae/2016033
Description
Summary:Biomonitoring is central to the European Union's Water Framework Directive (WFD) and to the French water and aquatic environmental law, but most diatom indices do not separate different anthropogenic impacts. To address this gap, the effect of water chemistry on diatom ecological guilds and life forms was assessed in order to indicate stream perturbations. Generalised additive models (GAMs) were built on a large-scale data set of 1571 samples from the French monitoring network. The relationships between diatom ecological guild and life form metrics were investigated by Principal components analysis and the results predicted by GAMs. The models characterised eight chemical parameters that modified adaptive strategies (ecological guilds) and growth morphology (life forms). Total phosphorus, conductivity, nitrate and pH are the main influencing factors, followed by temperature, dissolved oxygen and organic matter. The findings confirm three groups of diatoms with different adaptive strategies: 1 – fast moving species, 2 – species growing close to the substrate and 3 – species extending to the surface layers of the biofilm. Thirteen diatom metrics displayed a variety of responses to different ranges of the eight chemical parameters. These metrics could be used to help to identify and quantify which chemical alterations are caused by polluted effluents in rivers.
ISSN:1961-9502