Recent Advances in Acoustic Metamaterials for Simultaneous Sound Attenuation and Air Ventilation Performances

In the past two decades, acoustic metamaterials have garnered much attention owing to their unique functional characteristics, which are difficult to find in naturally available materials. The acoustic metamaterials have demonstrated excellent acoustical characteristics that paved a new pathway for...

Full description

Bibliographic Details
Main Authors: Sanjay Kumar, Heow Pueh Lee
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/8/686
Description
Summary:In the past two decades, acoustic metamaterials have garnered much attention owing to their unique functional characteristics, which are difficult to find in naturally available materials. The acoustic metamaterials have demonstrated excellent acoustical characteristics that paved a new pathway for researchers to develop effective solutions for a wide variety of multifunctional applications, such as low-frequency sound attenuation, sound wave manipulation, energy harvesting, acoustic focusing, acoustic cloaking, biomedical acoustics, and topological acoustics. This review provides an update on the acoustic metamaterials’ recent progress for simultaneous sound attenuation and air ventilation performances. Several variants of acoustic metamaterials, such as locally resonant structures, space-coiling, holey and labyrinthine metamaterials, and Fano resonant materials, are discussed briefly. Finally, the current challenges and future outlook in this emerging field are discussed as well.
ISSN:2073-4352