Summary: | Thin-walled integrated flexible support structures are the major trend in the development of current rolling bearing technology. A thin-walled, integrated, squirrel-cage flexible support roller bearing, quasi-dynamic iterative finite element analysis (FEA) model is established in this paper. The FEA model is used to calculate the structural deformation of the thin-wall rings and support structures; the dynamic characteristics of the bearing are analyzed using the noncircular bearing modified quasi-dynamic model. The influence of the integrated flexible support structure on the internal load distribution and the dynamic characteristics of the roller bearing are analyzed. The results indicate that with the support of a flexible squirrel-cage, the maximum contact load is decreased by 14.2%, the loading region is enlarged by 25%, the cage slide ratio is reduced by 24%, and the fatigue life is increased by more than 50%. In addition, as the ring wall thickness increased, the results increasingly approached those under a rigid assumption.
|