A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem

In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a p...

Full description

Bibliographic Details
Main Authors: Shifang Tian, Xiaowei Liu, Ran An
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/9941692
Description
Summary:In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.
ISSN:1563-5147