A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem
In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/9941692 |
Summary: | In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space. |
---|---|
ISSN: | 1563-5147 |