Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks
This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT) in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received informatio...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Mobile Information Systems |
Online Access: | http://dx.doi.org/10.1155/2017/2516035 |
Summary: | This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT) in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR) and time switching two-way relay (TS-TWR) protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA-) based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks. |
---|---|
ISSN: | 1574-017X 1875-905X |