Preparation of Si-carbon nanotube composite by decomposition of tetramethylsilane (TMS) and its hydrogen storage property

Hydrogen storage property of Si-carbon nanotube composite was studied. It was found that the carbon nanotube coated Si particle was prepared by the decomposition of tetramethylsilane by using Ni catalyst. The obtained composite was consisted of the spherical Si particle with 300 nm diameter and the...

Full description

Bibliographic Details
Main Author: Tatsumi Ishihara, Masashi Nakasu, Isamu Yasuda and Hiroshige Matsumoto
Format: Article
Language:English
Published: Taylor & Francis Group 2006-01-01
Series:Science and Technology of Advanced Materials
Online Access:http://www.iop.org/EJ/abstract/-search=58673045.3/1468-6996/7/7/A11
Description
Summary:Hydrogen storage property of Si-carbon nanotube composite was studied. It was found that the carbon nanotube coated Si particle was prepared by the decomposition of tetramethylsilane by using Ni catalyst. The obtained composite was consisted of the spherical Si particle with 300 nm diameter and the surface of Si particle was coated with carbon nanotube with 10 nm diameter. The obtained Si-carbon nanotube composite shows a fairly large hydrogen storage capacity of 2.5 wt%. The amount of storage H2 increased with increasing the preparation temperature and the largest hydrogen storage amount could be achieved at 1273 K for 6 h. Fairly large hydrogen storage capacity could be sustained after 3 cycles of adsorption and desorption.
ISSN:1468-6996
1878-5514