Dexmedetomidine Protects Rat Liver against Ischemia-Reperfusion Injury Partly by the α2A-Adrenoceptor Subtype and the Mechanism Is Associated with the TLR4/NF-κB Pathway

Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α2-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown....

Full description

Bibliographic Details
Main Authors: Yiheng Wang, Shan Wu, Xiaofang Yu, Shaoli Zhou, Mian Ge, Xinjin Chi, Jun Cai
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/17/7/995
Description
Summary:Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α2-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown. The authors aimed to examine whether pretreatment with Dex produces hepatic protection and investigate the influence of Dex on TLR4/NF-κB signaling. Dex was given via intraperitoneal injection 30 min prior to orthotopic autologous liver transplantation (OALT) in rats, and three α2-adrenoceptor antagonists including atipamezole (a nonselective α2 receptor blocker), ARC-239 (a specific α2B/C blocker) and BRL-44408 (a specific α2A blocker) were injected intraperitoneally 10 min before Dex administration. Histopathologic evaluation of the liver and the measurement of serum alanine aminotransferase activity, TLR4/NF-κB expression in the liver, and pro-inflammatory factors (serum tumor necrosis factor-α, interleukin-1β and hepatic myeloperoxidase) concentrations were performed 8 h after OALT. Dex ameliorated liver injury after OALT probably by suppressing the TLR4/NF-κB pathway and decreasing inflammatory mediator levels. The protective effects of Dex were reversed by atipamezole and BRL-44408, but not by ARC-239, suggesting that these effects were mediated in part by the α2A subtype. In conclusion, Dex attenuates liver injury partly via the α2A-adrenoceptor subtype, and the mechanism is due to the suppression of the TLR4/NF-κB pathway.
ISSN:1422-0067