An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry
<p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) based metabolite profiling has been increasingly popular for scientific and biomedical studies, primarily due to recent technological development such as comprehensive two-dimensional gas chromatography time-of...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-10-01
|
Series: | BMC Bioinformatics |
Online Access: | http://www.biomedcentral.com/1471-2105/12/392 |
id |
doaj-41f6fe9dc99d4f3a99a1a4ed8493c185 |
---|---|
record_format |
Article |
spelling |
doaj-41f6fe9dc99d4f3a99a1a4ed8493c1852020-11-25T01:10:53ZengBMCBMC Bioinformatics1471-21052011-10-0112139210.1186/1471-2105-12-392An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometryKim SeonghoZhang XiangShi XueJeong JaesikShen Changyu<p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) based metabolite profiling has been increasingly popular for scientific and biomedical studies, primarily due to recent technological development such as comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS). Nevertheless, the identifications of metabolites from complex samples are subject to errors. Statistical/computational approaches to improve the accuracy of the identifications and false positive estimate are in great need. We propose an empirical Bayes model which accounts for a competing score in addition to the similarity score to tackle this problem. The competition score characterizes the propensity of a candidate metabolite of being matched to some spectrum based on the metabolite's similarity score with other spectra in the library searched against. The competition score allows the model to properly assess the evidence on the presence/absence status of a metabolite based on whether or not the metabolite is matched to some sample spectrum.</p> <p>Results</p> <p>With a mixture of metabolite standards, we demonstrated that our method has better identification accuracy than other four existing methods. Moreover, our method has reliable false discovery rate estimate. We also applied our method to the data collected from the plasma of a rat and identified some metabolites from the plasma under the control of false discovery rate.</p> <p>Conclusions</p> <p>We developed an empirical Bayes model for metabolite identification and validated the method through a mixture of metabolite standards and rat plasma. The results show that our hierarchical model improves identification accuracy as compared with methods that do not structurally model the involved variables. The improvement in identification accuracy is likely to facilitate downstream analysis such as peak alignment and biomarker identification. Raw data and result matrices can be found at <url>http://www.biostat.iupui.edu/~ChangyuShen/index.htm</url></p> <p>Trial Registration</p> <p>2123938128573429</p> http://www.biomedcentral.com/1471-2105/12/392 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kim Seongho Zhang Xiang Shi Xue Jeong Jaesik Shen Changyu |
spellingShingle |
Kim Seongho Zhang Xiang Shi Xue Jeong Jaesik Shen Changyu An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry BMC Bioinformatics |
author_facet |
Kim Seongho Zhang Xiang Shi Xue Jeong Jaesik Shen Changyu |
author_sort |
Kim Seongho |
title |
An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
title_short |
An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
title_full |
An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
title_fullStr |
An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
title_full_unstemmed |
An empirical Bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
title_sort |
empirical bayes model using a competition score for metabolite identification in gas chromatography mass spectrometry |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2011-10-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) based metabolite profiling has been increasingly popular for scientific and biomedical studies, primarily due to recent technological development such as comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS). Nevertheless, the identifications of metabolites from complex samples are subject to errors. Statistical/computational approaches to improve the accuracy of the identifications and false positive estimate are in great need. We propose an empirical Bayes model which accounts for a competing score in addition to the similarity score to tackle this problem. The competition score characterizes the propensity of a candidate metabolite of being matched to some spectrum based on the metabolite's similarity score with other spectra in the library searched against. The competition score allows the model to properly assess the evidence on the presence/absence status of a metabolite based on whether or not the metabolite is matched to some sample spectrum.</p> <p>Results</p> <p>With a mixture of metabolite standards, we demonstrated that our method has better identification accuracy than other four existing methods. Moreover, our method has reliable false discovery rate estimate. We also applied our method to the data collected from the plasma of a rat and identified some metabolites from the plasma under the control of false discovery rate.</p> <p>Conclusions</p> <p>We developed an empirical Bayes model for metabolite identification and validated the method through a mixture of metabolite standards and rat plasma. The results show that our hierarchical model improves identification accuracy as compared with methods that do not structurally model the involved variables. The improvement in identification accuracy is likely to facilitate downstream analysis such as peak alignment and biomarker identification. Raw data and result matrices can be found at <url>http://www.biostat.iupui.edu/~ChangyuShen/index.htm</url></p> <p>Trial Registration</p> <p>2123938128573429</p> |
url |
http://www.biomedcentral.com/1471-2105/12/392 |
work_keys_str_mv |
AT kimseongho anempiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT zhangxiang anempiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT shixue anempiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT jeongjaesik anempiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT shenchangyu anempiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT kimseongho empiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT zhangxiang empiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT shixue empiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT jeongjaesik empiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry AT shenchangyu empiricalbayesmodelusingacompetitionscoreformetaboliteidentificationingaschromatographymassspectrometry |
_version_ |
1725173647968043008 |