Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
We construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/11/1011 |
id |
doaj-41e0ed9ac4c74bcfb1c9c16fd91e4a23 |
---|---|
record_format |
Article |
spelling |
doaj-41e0ed9ac4c74bcfb1c9c16fd91e4a232020-11-25T01:56:34ZengMDPI AGMathematics2227-73902019-10-01711101110.3390/math7111011math7111011Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>Tao Cheng0Lihua Feng1Weijun Liu2School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, ChinaSchool of Mathematics and Statistics, Central South University New Campus, Changsha 410083, ChinaSchool of Mathematics and Statistics, Central South University New Campus, Changsha 410083, ChinaWe construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>〈</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mspace width="3.33333pt"></mspace> <mo>|</mo> <mspace width="3.33333pt"></mspace> <msup> <mi>a</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>b</mi> <mn>4</mn> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>b</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mi>b</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>〉</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, some of which generalize those earlier constructions. For a prime <i>p</i> and a positive integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, for some cases, we characterize the DSRCGs over <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mrow> <mn>4</mn> <msup> <mi>p</mi> <mi>α</mi> </msup> </mrow> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/7/11/1011directed strongly regular graphcayley graphmetacyclic groups |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tao Cheng Lihua Feng Weijun Liu |
spellingShingle |
Tao Cheng Lihua Feng Weijun Liu Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> Mathematics directed strongly regular graph cayley graph metacyclic groups |
author_facet |
Tao Cheng Lihua Feng Weijun Liu |
author_sort |
Tao Cheng |
title |
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> |
title_short |
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> |
title_full |
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> |
title_fullStr |
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> |
title_full_unstemmed |
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i> |
title_sort |
directed strongly regular cayley graphs over metacyclic groups of order 4<i>n</i> |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-10-01 |
description |
We construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>〈</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mspace width="3.33333pt"></mspace> <mo>|</mo> <mspace width="3.33333pt"></mspace> <msup> <mi>a</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>b</mi> <mn>4</mn> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>b</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mi>b</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>〉</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, some of which generalize those earlier constructions. For a prime <i>p</i> and a positive integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, for some cases, we characterize the DSRCGs over <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mrow> <mn>4</mn> <msup> <mi>p</mi> <mi>α</mi> </msup> </mrow> </msub> </semantics> </math> </inline-formula>. |
topic |
directed strongly regular graph cayley graph metacyclic groups |
url |
https://www.mdpi.com/2227-7390/7/11/1011 |
work_keys_str_mv |
AT taocheng directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini AT lihuafeng directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini AT weijunliu directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini |
_version_ |
1724979245989494784 |