Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>

We construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi>...

Full description

Bibliographic Details
Main Authors: Tao Cheng, Lihua Feng, Weijun Liu
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/11/1011
id doaj-41e0ed9ac4c74bcfb1c9c16fd91e4a23
record_format Article
spelling doaj-41e0ed9ac4c74bcfb1c9c16fd91e4a232020-11-25T01:56:34ZengMDPI AGMathematics2227-73902019-10-01711101110.3390/math7111011math7111011Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>Tao Cheng0Lihua Feng1Weijun Liu2School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, ChinaSchool of Mathematics and Statistics, Central South University New Campus, Changsha 410083, ChinaSchool of Mathematics and Statistics, Central South University New Campus, Changsha 410083, ChinaWe construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>&#9001;</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mspace width="3.33333pt"></mspace> <mo>|</mo> <mspace width="3.33333pt"></mspace> <msup> <mi>a</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>b</mi> <mn>4</mn> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>b</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mi>b</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> <mo>&#9002;</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, some of which generalize those earlier constructions. For a prime <i>p</i> and a positive integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, for some cases, we characterize the DSRCGs over <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mrow> <mn>4</mn> <msup> <mi>p</mi> <mi>&#945;</mi> </msup> </mrow> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/7/11/1011directed strongly regular graphcayley graphmetacyclic groups
collection DOAJ
language English
format Article
sources DOAJ
author Tao Cheng
Lihua Feng
Weijun Liu
spellingShingle Tao Cheng
Lihua Feng
Weijun Liu
Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
Mathematics
directed strongly regular graph
cayley graph
metacyclic groups
author_facet Tao Cheng
Lihua Feng
Weijun Liu
author_sort Tao Cheng
title Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
title_short Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
title_full Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
title_fullStr Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
title_full_unstemmed Directed Strongly Regular Cayley Graphs over Metacyclic Groups of Order 4<i>n</i>
title_sort directed strongly regular cayley graphs over metacyclic groups of order 4<i>n</i>
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-10-01
description We construct several new families of directed strongly regular Cayley graphs (DSRCGs) over the metacyclic group <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>4</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>&#9001;</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mspace width="3.33333pt"></mspace> <mo>|</mo> <mspace width="3.33333pt"></mspace> <msup> <mi>a</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>b</mi> <mn>4</mn> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>b</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mi>b</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> <mo>&#9002;</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, some of which generalize those earlier constructions. For a prime <i>p</i> and a positive integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, for some cases, we characterize the DSRCGs over <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mrow> <mn>4</mn> <msup> <mi>p</mi> <mi>&#945;</mi> </msup> </mrow> </msub> </semantics> </math> </inline-formula>.
topic directed strongly regular graph
cayley graph
metacyclic groups
url https://www.mdpi.com/2227-7390/7/11/1011
work_keys_str_mv AT taocheng directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini
AT lihuafeng directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini
AT weijunliu directedstronglyregularcayleygraphsovermetacyclicgroupsoforder4ini
_version_ 1724979245989494784