On additivity of derivations

Let $R$ be a ring and $M$ be an $R$-bimodule. A mapping $d:R\rightarrow M$ (not necessarily additive) is called multiplicative derivation of $R$ if $d(xy)=d(x)y+xd(y)$ for all $x,y\in R.$ In this paper, we intend to establish the additivity of $d$ under some suitable restrictions. Moreover, we intro...

Full description

Bibliographic Details
Main Authors: G.S. Sandhu, D. Kumar
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2019-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/2123
id doaj-41d60039e1f340c8b1f82a013ae31fe4
record_format Article
spelling doaj-41d60039e1f340c8b1f82a013ae31fe42020-11-25T03:20:58ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102019-12-0111245346210.15330/cmp.11.2.453-4622123On additivity of derivationsG.S. Sandhu0D. Kumar1Patel Memorial National College Rajpura, 140401, Punjab, IndiaPunjabi University, 147002, Patiala, IndiaLet $R$ be a ring and $M$ be an $R$-bimodule. A mapping $d:R\rightarrow M$ (not necessarily additive) is called multiplicative derivation of $R$ if $d(xy)=d(x)y+xd(y)$ for all $x,y\in R.$ In this paper, we intend to establish the additivity of $d$ under some suitable restrictions. Moreover, we introduce multiplicative semi-derivations of rings and discuss their additivity.https://journals.pnu.edu.ua/index.php/cmp/article/view/2123derivationmultiplicative derivationmultiplicative semi-derivationadditivitypeirce decomposition
collection DOAJ
language English
format Article
sources DOAJ
author G.S. Sandhu
D. Kumar
spellingShingle G.S. Sandhu
D. Kumar
On additivity of derivations
Karpatsʹkì Matematičnì Publìkacìï
derivation
multiplicative derivation
multiplicative semi-derivation
additivity
peirce decomposition
author_facet G.S. Sandhu
D. Kumar
author_sort G.S. Sandhu
title On additivity of derivations
title_short On additivity of derivations
title_full On additivity of derivations
title_fullStr On additivity of derivations
title_full_unstemmed On additivity of derivations
title_sort on additivity of derivations
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2019-12-01
description Let $R$ be a ring and $M$ be an $R$-bimodule. A mapping $d:R\rightarrow M$ (not necessarily additive) is called multiplicative derivation of $R$ if $d(xy)=d(x)y+xd(y)$ for all $x,y\in R.$ In this paper, we intend to establish the additivity of $d$ under some suitable restrictions. Moreover, we introduce multiplicative semi-derivations of rings and discuss their additivity.
topic derivation
multiplicative derivation
multiplicative semi-derivation
additivity
peirce decomposition
url https://journals.pnu.edu.ua/index.php/cmp/article/view/2123
work_keys_str_mv AT gssandhu onadditivityofderivations
AT dkumar onadditivityofderivations
_version_ 1724615613131784192