Nanostructures for the Inhibition of Viral Infections

Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infecti...

Full description

Bibliographic Details
Main Authors: Sabine Szunerits, Alexandre Barras, Manakamana Khanal, Quentin Pagneux, Rabah Boukherroub
Format: Article
Language:English
Published: MDPI AG 2015-08-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/20/8/14051
Description
Summary:Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
ISSN:1420-3049