Binary Classification with a Pseudo Exponential Model and Its Application for Multi-Task Learning
In this paper, we investigate the basic properties of binary classification with a pseudo model based on the Itakura–Saito distance and reveal that the Itakura–Saito distance is a unique appropriate measure for estimation with the pseudo model in the framework of general Bregman divergence. Furtherm...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-08-01
|
Series: | Entropy |
Subjects: | |
Online Access: | http://www.mdpi.com/1099-4300/17/8/5673 |