Analysis of Co-Effects on Air Pollutants and CO2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants

China is now facing great challenges resulting from climate change and air pollution, driven by the processes of industrialization and urbanization. Greenhouse gas and air pollutant emissions produced by the coal-fired power industry represent approximately 70% of the total emissions in China’s indu...

Full description

Bibliographic Details
Main Authors: Haijun Zhao, Weichun Ma, Hongjia Dong, Ping Jiang
Format: Article
Language:English
Published: MDPI AG 2017-03-01
Series:Sustainability
Subjects:
Online Access:http://www.mdpi.com/2071-1050/9/4/499
Description
Summary:China is now facing great challenges resulting from climate change and air pollution, driven by the processes of industrialization and urbanization. Greenhouse gas and air pollutant emissions produced by the coal-fired power industry represent approximately 70% of the total emissions in China’s industrial sector. In this study, 39 coal-fired power plants built in China between 2014 and 2015 were analyzed in regards to the co-effects oncarbon dioxide and air pollutant emissions generated directly and indirectly by end-of-pipe measures of pollution control. After completing the quantitative analysis with input data from 83units of power plants, we found that co-effects were positive only for air pollutant reductions through the implementation of desulfurization, denitrification, and dedusting measures, but co-effects were negative for carbon dioxide production because of the corresponding electricity use and chemical reactions that led to the increases in carbon dioxide emissions. We also performed an assessment of the synergistic coefficients to better understand the degree of co-effects. It will be important for researchers to take a comprehensive view of China’s coal-fired power plants and look for solutions that can maximize positive co-effects and achieve overall co-benefits of reductions in greenhouse gas emissions and air pollutants.
ISSN:2071-1050