Summary: | Abstract Background China is undergoing a massive transition toward an urban and industrial economy. These changes will restructure the demographics and economy which will eventually influence the future patterns of disease. The risk factors of vision-impairing eye diseases remain ambiguous and poorly understood. Metabolomics is an ideal tool to understand and shed light on the ocular disease mechanisms for earlier treatment. This article aims to describe the design, methodology and baseline data of the Yueqing Ocular Diseases Investigation (YODI), a developed county population-based study to determine the prevalence and primary causes of visual impairment; also with metabonomics analysis we aimed to identify, predict and suggest some preventive biomarkers that cause blindness. Methods A population-based, cross-sectional study. Randomized clustering sampling was used to identify adults aged 50 years and older in Xiangyang Town, Yueqing county-level City. The interviews covered demographic, behavioral, ocular risk factors and mental health state. The ocular examination included visual acuity, autorefraction, intraocular pressure, anterior and posterior segment examinations, fundus photography, retinal tomography and angiography, and visual field testing. Anthropometric measurements included height and weight, waist and hip circumference, blood pressure, pulse rate, electrocardiogram, and abdominal ultrasound scan. A venous blood sample was collected for laboratory tests and metabonomics studies. Results Of the 5319 individuals recruited for the YODI, 4769 (89.7%) subjects were enrolled for analyses. The median age was 62.0 years, and 45.6% were male. The educational level of illiteracy or semi-illiteracy, primary, middle and high school or above was 29.8%, 45.5%, 20.1%, and 3.3%, respectively. Majority of the participants were female, younger, and less educated when compared with nonparticipants. The average body mass index and waist-hip ratios were 24.4 ± 3.4 kg/m2 and 0.9 ± 0.1 respectively. Blood sample collection reached a sample size of 1909 (479 from subjects with self-reported diabetes and 1430 from one-third of the 4290 subjects without self-reported diabetes). Conclusions The YODI provides population-based data with a high response rate (89.7%) on the prevalence and primary causes of major vision-impairing eye diseases in developed county areas in eastern China. Metabonomics analysis from YODI will provide further association of metabolic characteristics with the visual impairment eye diseases. The risk prediction model could be created and has the potential to be generalized to developed eastern areas in China for prevention.
|