A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model

Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probab...

Full description

Bibliographic Details
Main Authors: Inmaculada Barranco-Chamorro, Yuri A. Iriarte, Yolanda M. Gómez, Juan M. Astorga, Héctor W. Gómez
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1226
id doaj-419b4f3fb8ef48548ebb3b6033ab3493
record_format Article
spelling doaj-419b4f3fb8ef48548ebb3b6033ab34932021-07-23T14:09:22ZengMDPI AGSymmetry2073-89942021-07-01131226122610.3390/sym13071226A Generalized Rayleigh Family of Distributions Based on the Modified Slash ModelInmaculada Barranco-Chamorro0Yuri A. Iriarte1Yolanda M. Gómez2Juan M. Astorga3Héctor W. Gómez4Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Sevilla, SpainDepartamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, ChileDepartamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, ChileDepartamento de Tecnologías de la Energía, Facultad Tecnológica, Universidad de Atacama, Copiapó 1530000, ChileDepartamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, ChileSpecifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.https://www.mdpi.com/2073-8994/13/7/1226generalized Rayleigh distributionEM algorithmkurtosismaximum likelihood estimationslashed generalized Rayleigh distribution
collection DOAJ
language English
format Article
sources DOAJ
author Inmaculada Barranco-Chamorro
Yuri A. Iriarte
Yolanda M. Gómez
Juan M. Astorga
Héctor W. Gómez
spellingShingle Inmaculada Barranco-Chamorro
Yuri A. Iriarte
Yolanda M. Gómez
Juan M. Astorga
Héctor W. Gómez
A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
Symmetry
generalized Rayleigh distribution
EM algorithm
kurtosis
maximum likelihood estimation
slashed generalized Rayleigh distribution
author_facet Inmaculada Barranco-Chamorro
Yuri A. Iriarte
Yolanda M. Gómez
Juan M. Astorga
Héctor W. Gómez
author_sort Inmaculada Barranco-Chamorro
title A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
title_short A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
title_full A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
title_fullStr A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
title_full_unstemmed A Generalized Rayleigh Family of Distributions Based on the Modified Slash Model
title_sort generalized rayleigh family of distributions based on the modified slash model
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-07-01
description Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.
topic generalized Rayleigh distribution
EM algorithm
kurtosis
maximum likelihood estimation
slashed generalized Rayleigh distribution
url https://www.mdpi.com/2073-8994/13/7/1226
work_keys_str_mv AT inmaculadabarrancochamorro ageneralizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT yuriairiarte ageneralizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT yolandamgomez ageneralizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT juanmastorga ageneralizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT hectorwgomez ageneralizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT inmaculadabarrancochamorro generalizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT yuriairiarte generalizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT yolandamgomez generalizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT juanmastorga generalizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
AT hectorwgomez generalizedrayleighfamilyofdistributionsbasedonthemodifiedslashmodel
_version_ 1721285613735378944