Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors
This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM) model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order ne...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/715094 |
Summary: | This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM) model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN) trained with a novel algorithm based on extended Kalman filter (EKF) and particle swarm optimization (PSO), using an online series-parallel con
figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme. |
---|---|
ISSN: | 1024-123X 1563-5147 |