Efficiency of Neural Networks for Estimating the Patch Load Resistance of Plate Girders with a Focus on Uncertainties in Material and Geometrical Properties

In this paper, a sensitivity analysis of artificial neural networks (NNs) is presented and employed for estimating the patch load resistance of plate girders subjected to patch loading. To evaluate the accuracy of the proposed NN model, the results are compared with the previously proposed empirical...

Full description

Bibliographic Details
Main Authors: Farzad Shahabian, Sidi Mohammed Elachachi, Denys Breysse
Format: Article
Language:English
Published: University of Tehran Press 2014-06-01
Series:Civil Engineering Infrastructures Journal
Subjects:
Online Access:http://ceij.ut.ac.ir/article_50314_afd2c195149544066539f3c4860e2dc8.pdf
Description
Summary:In this paper, a sensitivity analysis of artificial neural networks (NNs) is presented and employed for estimating the patch load resistance of plate girders subjected to patch loading. To evaluate the accuracy of the proposed NN model, the results are compared with the previously proposed empirical models, so that we can estimate the resistance of plate girders subjected to patch loading. The empirical models are calibrated, for improving the formulae, with experimental data set which was collected from the corresponding literature. NNs models are later trained and validated through using the existing experimental data. In this process several NNs architectures are taken into account. A set of good NNs models are selected and then analyzed regarding their robustness when confronted with the test data set and regarding their ability to reproduce the effect of uncertainty on the data. A sensitivity analysis is conducted herein in order to investigate the effect of variability in material and geometrical properties of plate girders. Thereafter, several estimates measuring the efficiency and the quality of the NN model and the calibrated models are obtained and discussed.
ISSN:2322-2093
2423-6691