A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS) effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enh...

Full description

Bibliographic Details
Main Authors: Chongning Li, Libing Wang, Yanghe Luo, Aihui Liang, Guiqing Wen, Zhiliang Jiang
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/5/277
Description
Summary:Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS) effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.
ISSN:2079-4991