Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC

We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations...

Full description

Bibliographic Details
Main Authors: Boseung Choi, Sydney Busch, Dieudonne Kazadi, Benoit Kebela, Emile Okitolonda, Yi Dai, Robert M Lumpkin, Wasiur Rahman Khuda Bukhsh, Omar Saucedo, Marcel Yotebieng, Joe Tien, Eben B Kenah, Grzegorz A Rempala
Format: Article
Language:English
Published: Biomath Forum 2019-10-01
Series:Biomath
Subjects:
Online Access:http://www.biomathforum.org/biomath/index.php/biomath/article/view/1316
id doaj-41532b5d32bb4f2b813d3b55b7bba66c
record_format Article
spelling doaj-41532b5d32bb4f2b813d3b55b7bba66c2020-11-25T02:37:03ZengBiomath ForumBiomath1314-684X1314-72182019-10-018210.11145/j.biomath.2019.10.037834Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRCBoseung Choi0Sydney Busch1Dieudonne Kazadi2Benoit Kebela3Emile Okitolonda4Yi Dai5Robert M Lumpkin6Wasiur Rahman Khuda Bukhsh7Omar Saucedo8Marcel Yotebieng9Joe Tien10Eben B Kenah11Grzegorz A Rempala12Department of National Statistics, Korea University Sejoung Campus, Seoul, Republic of KoreaAugsburg UniversityMinistry of Health, Democratic Republic of Kongo, Kinshasa, DRCDepartment of Public Health, University of Kinshasa, Kinshasa, DRCDepartment of Public Health, University of Kinshasa, Kinshasa, DRCDivision of Biostatistics, The Ohio State UniversityDepartment of Statistics, The Ohio State UniversityMathematical Biosciences Institute, The Ohio State UniversityMathematical Biosciences Institute, The Ohio State UniversityDivision of Epidemiology The Ohio State UniversityDepartment of Mathematics The Ohio State UniversityDivision of Biostatistics The Ohio State UniversityDepartment of Mathematics, Division of Biostatistics and Mathematical Biosciences Institute, The Ohio State UniversityWe describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations with no explicit transmission information. We compare these approaches using data from a 2012 outbreak of Ebola virus disease caused by Bundibugyo ebolavirus in city of Isiro, Demo- cratic Republic of the Congo. The branching process model allows for a direct comparison of disease transmission across different environments, such as the general community or the Ebola treatment unit. However, the survival model appears to yield parameter estimates with more accuracy and better precision in some circumstances.http://www.biomathforum.org/biomath/index.php/biomath/article/view/1316parameter estimation, branching process, markov chain monte-carlo methods, survival dynamical system
collection DOAJ
language English
format Article
sources DOAJ
author Boseung Choi
Sydney Busch
Dieudonne Kazadi
Benoit Kebela
Emile Okitolonda
Yi Dai
Robert M Lumpkin
Wasiur Rahman Khuda Bukhsh
Omar Saucedo
Marcel Yotebieng
Joe Tien
Eben B Kenah
Grzegorz A Rempala
spellingShingle Boseung Choi
Sydney Busch
Dieudonne Kazadi
Benoit Kebela
Emile Okitolonda
Yi Dai
Robert M Lumpkin
Wasiur Rahman Khuda Bukhsh
Omar Saucedo
Marcel Yotebieng
Joe Tien
Eben B Kenah
Grzegorz A Rempala
Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
Biomath
parameter estimation, branching process, markov chain monte-carlo methods, survival dynamical system
author_facet Boseung Choi
Sydney Busch
Dieudonne Kazadi
Benoit Kebela
Emile Okitolonda
Yi Dai
Robert M Lumpkin
Wasiur Rahman Khuda Bukhsh
Omar Saucedo
Marcel Yotebieng
Joe Tien
Eben B Kenah
Grzegorz A Rempala
author_sort Boseung Choi
title Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_short Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_full Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_fullStr Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_full_unstemmed Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_sort modeling outbreak data: analysis of a 2012 ebola virus disease epidemic in drc
publisher Biomath Forum
series Biomath
issn 1314-684X
1314-7218
publishDate 2019-10-01
description We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations with no explicit transmission information. We compare these approaches using data from a 2012 outbreak of Ebola virus disease caused by Bundibugyo ebolavirus in city of Isiro, Demo- cratic Republic of the Congo. The branching process model allows for a direct comparison of disease transmission across different environments, such as the general community or the Ebola treatment unit. However, the survival model appears to yield parameter estimates with more accuracy and better precision in some circumstances.
topic parameter estimation, branching process, markov chain monte-carlo methods, survival dynamical system
url http://www.biomathforum.org/biomath/index.php/biomath/article/view/1316
work_keys_str_mv AT boseungchoi modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT sydneybusch modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT dieudonnekazadi modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT benoitkebela modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT emileokitolonda modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT yidai modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT robertmlumpkin modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT wasiurrahmankhudabukhsh modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT omarsaucedo modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT marcelyotebieng modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT joetien modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT ebenbkenah modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT grzegorzarempala modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
_version_ 1724796977487544320