Convex functions and the rolling circle criterion

Given 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem fo...

Full description

Bibliographic Details
Main Authors: V. Srinivas, O. P. Juneja, G. P. Kapoor
Format: Article
Language:English
Published: Hindawi Limited 1995-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171295001025
id doaj-414d8dc7c5954b01af0c7b1d5e584be4
record_format Article
spelling doaj-414d8dc7c5954b01af0c7b1d5e584be42020-11-24T22:57:39ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251995-01-0118479981110.1155/S0161171295001025Convex functions and the rolling circle criterionV. Srinivas0O. P. Juneja1G. P. Kapoor2Department of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaDepartment of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaDepartment of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaGiven 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem for the class of convex functions of bounded type, are found.http://dx.doi.org/10.1155/S0161171295001025univalent functionsconvex functions curvaturesubordinationdistortion theoremsgrowth theorems.
collection DOAJ
language English
format Article
sources DOAJ
author V. Srinivas
O. P. Juneja
G. P. Kapoor
spellingShingle V. Srinivas
O. P. Juneja
G. P. Kapoor
Convex functions and the rolling circle criterion
International Journal of Mathematics and Mathematical Sciences
univalent functions
convex functions
curvature
subordination
distortion theorems
growth theorems.
author_facet V. Srinivas
O. P. Juneja
G. P. Kapoor
author_sort V. Srinivas
title Convex functions and the rolling circle criterion
title_short Convex functions and the rolling circle criterion
title_full Convex functions and the rolling circle criterion
title_fullStr Convex functions and the rolling circle criterion
title_full_unstemmed Convex functions and the rolling circle criterion
title_sort convex functions and the rolling circle criterion
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1995-01-01
description Given 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem for the class of convex functions of bounded type, are found.
topic univalent functions
convex functions
curvature
subordination
distortion theorems
growth theorems.
url http://dx.doi.org/10.1155/S0161171295001025
work_keys_str_mv AT vsrinivas convexfunctionsandtherollingcirclecriterion
AT opjuneja convexfunctionsandtherollingcirclecriterion
AT gpkapoor convexfunctionsandtherollingcirclecriterion
_version_ 1725649872746446848