Convex functions and the rolling circle criterion
Given 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem fo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1995-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171295001025 |
id |
doaj-414d8dc7c5954b01af0c7b1d5e584be4 |
---|---|
record_format |
Article |
spelling |
doaj-414d8dc7c5954b01af0c7b1d5e584be42020-11-24T22:57:39ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251995-01-0118479981110.1155/S0161171295001025Convex functions and the rolling circle criterionV. Srinivas0O. P. Juneja1G. P. Kapoor2Department of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaDepartment of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaDepartment of Mathematics, Indian Institute of Technology, Kanpur 208016, IndiaGiven 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem for the class of convex functions of bounded type, are found.http://dx.doi.org/10.1155/S0161171295001025univalent functionsconvex functions curvaturesubordinationdistortion theoremsgrowth theorems. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
V. Srinivas O. P. Juneja G. P. Kapoor |
spellingShingle |
V. Srinivas O. P. Juneja G. P. Kapoor Convex functions and the rolling circle criterion International Journal of Mathematics and Mathematical Sciences univalent functions convex functions curvature subordination distortion theorems growth theorems. |
author_facet |
V. Srinivas O. P. Juneja G. P. Kapoor |
author_sort |
V. Srinivas |
title |
Convex functions and the rolling circle criterion |
title_short |
Convex functions and the rolling circle criterion |
title_full |
Convex functions and the rolling circle criterion |
title_fullStr |
Convex functions and the rolling circle criterion |
title_full_unstemmed |
Convex functions and the rolling circle criterion |
title_sort |
convex functions and the rolling circle criterion |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1995-01-01 |
description |
Given 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of
normalized convex functions f in the unit disc U, for which ∂f(U)
satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2.
Necessary and sufficient conditions for R1=R2, growth and
distortion theorems for CVG(R1,R2) and rotation theorem for the
class of convex functions of bounded type, are found. |
topic |
univalent functions convex functions curvature subordination distortion theorems growth theorems. |
url |
http://dx.doi.org/10.1155/S0161171295001025 |
work_keys_str_mv |
AT vsrinivas convexfunctionsandtherollingcirclecriterion AT opjuneja convexfunctionsandtherollingcirclecriterion AT gpkapoor convexfunctionsandtherollingcirclecriterion |
_version_ |
1725649872746446848 |