Silane-Modified Graphene Oxide Composite as a Promising Corrosion-Inhibiting Film for Magnesium Alloy AZ31

In this study, (3-aminopropyl)-triethoxysilane–modified graphene oxide (GO) composite thin films were synthesized on magnesium alloy AZ31 substrate. The structure, composition, and morphology of silane-GO films were analyzed. Electrochemical measurements and immersion tests showed that silane-GO coa...

Full description

Bibliographic Details
Main Authors: You Zhang, Juping Wang, Zheng Zhang, Kai Wei, Zhe Zhang, Xuelong Hao, Fei Chen
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-09-01
Series:Frontiers in Materials
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmats.2021.737792/full
Description
Summary:In this study, (3-aminopropyl)-triethoxysilane–modified graphene oxide (GO) composite thin films were synthesized on magnesium alloy AZ31 substrate. The structure, composition, and morphology of silane-GO films were analyzed. Electrochemical measurements and immersion tests showed that silane-GO coatings provide effective protection for magnesium alloy substrates, owing to the good barrier property of the layered GO, and decrease the defects on the GO film surface due to the silane modification. In addition, the corrosion product between the outer silane-GO film and Mg alloy substrate also improved the corrosion resistance of the Mg alloy. Thus, silane-GO composite thin films provide an effective approach for protecting the lightweight metal substrate.
ISSN:2296-8016