Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain.
The spiny lobster, Panulirus argus, has two classes of chemosensilla representing "olfaction" and "distributed chemoreception," as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory rece...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6150509?pdf=render |
id |
doaj-412545e24a97432f82c2bb7d1a5b13f7 |
---|---|
record_format |
Article |
spelling |
doaj-412545e24a97432f82c2bb7d1a5b13f72020-11-25T02:33:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01139e020393510.1371/journal.pone.0203935Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain.Mihika T KozmaManfred SchmidtHanh Ngo-VuShea D SparksAdriano SenatoreCharles D DerbyThe spiny lobster, Panulirus argus, has two classes of chemosensilla representing "olfaction" and "distributed chemoreception," as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.http://europepmc.org/articles/PMC6150509?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mihika T Kozma Manfred Schmidt Hanh Ngo-Vu Shea D Sparks Adriano Senatore Charles D Derby |
spellingShingle |
Mihika T Kozma Manfred Schmidt Hanh Ngo-Vu Shea D Sparks Adriano Senatore Charles D Derby Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. PLoS ONE |
author_facet |
Mihika T Kozma Manfred Schmidt Hanh Ngo-Vu Shea D Sparks Adriano Senatore Charles D Derby |
author_sort |
Mihika T Kozma |
title |
Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. |
title_short |
Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. |
title_full |
Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. |
title_fullStr |
Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. |
title_full_unstemmed |
Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. |
title_sort |
chemoreceptor proteins in the caribbean spiny lobster, panulirus argus: expression of ionotropic receptors, gustatory receptors, and trp channels in two chemosensory organs and brain. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
The spiny lobster, Panulirus argus, has two classes of chemosensilla representing "olfaction" and "distributed chemoreception," as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception. |
url |
http://europepmc.org/articles/PMC6150509?pdf=render |
work_keys_str_mv |
AT mihikatkozma chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain AT manfredschmidt chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain AT hanhngovu chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain AT sheadsparks chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain AT adrianosenatore chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain AT charlesdderby chemoreceptorproteinsinthecaribbeanspinylobsterpanulirusargusexpressionofionotropicreceptorsgustatoryreceptorsandtrpchannelsintwochemosensoryorgansandbrain |
_version_ |
1724813293266141184 |