Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system
Limestone calcined clay cement (LC3) is a new type of low-carbon cement that can reduce energy consumption and carbon dioxide emissions while meeting the performance requirements of ordinary cement. In this study, polypropylene (PP) fibers were mixed into limestone calcined clay cement-based materia...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-11-01
|
Series: | Journal of Materials Research and Technology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2238785421010048 |
id |
doaj-411f421e5ebb4aa7b8ffdc851663167f |
---|---|
record_format |
Article |
spelling |
doaj-411f421e5ebb4aa7b8ffdc851663167f2021-09-25T05:07:47ZengElsevierJournal of Materials Research and Technology2238-78542021-11-011521172144Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing systemJun Liu0Weizhuo Zhang1Zhenlin Li2Hesong Jin3Wei Liu4Luping Tang5Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR ChinaGuangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR ChinaGuangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR ChinaGuangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR China; Corresponding author.Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR ChinaDepartment of Architecture and Civil Engineering, Division of Building Technology, Chalmers University of Technology, 41296, Gothenburg, SwedenLimestone calcined clay cement (LC3) is a new type of low-carbon cement that can reduce energy consumption and carbon dioxide emissions while meeting the performance requirements of ordinary cement. In this study, polypropylene (PP) fibers were mixed into limestone calcined clay cement-based materials to make new low-carbon ECCs. In this study, a total of 24 sets of specimens were designed for 4 groups of curing ages and 6 types of mix ratios. The compressive load–displacement data were measured the compressive curve characteristics were analyzed then, a compressive constitutive model of the composites was deduced and obtained. Through XRD, SEM-EDS and MIP experiments, the reasons and laws of the compressive strength ranges of adding PP fibers and LC3 to engineered cementitious composites (LC3-PP-ECCs) are further explained from the perspective of the pore size, microstructures and hydration products. The results show that, after 28 days, the compressive strength values of LC3-PP-ECCs generally decreases with increasing PP fiber content and the combined effect of PP fibers and hydration products causes the compressive strength of LC3-ECCs with 0.5% PP fibers to drop sharply. In addition, the specimens showed better properties in terms of toughness, ductility and energy absorption. However, in the microstructures, the addition of PP fibers will cause more internal defects and flaws. This results of this study can provide some theoretical experience and technical support for the engineering application of LC3-ECCs.http://www.sciencedirect.com/science/article/pii/S2238785421010048Engineered cementitious composites (ECCs)Limestone calcined clay cement (LC3)PP fibersImproved compressive constitutive modelMicrostructuresPore size and porosity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jun Liu Weizhuo Zhang Zhenlin Li Hesong Jin Wei Liu Luping Tang |
spellingShingle |
Jun Liu Weizhuo Zhang Zhenlin Li Hesong Jin Wei Liu Luping Tang Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system Journal of Materials Research and Technology Engineered cementitious composites (ECCs) Limestone calcined clay cement (LC3) PP fibers Improved compressive constitutive model Microstructures Pore size and porosity |
author_facet |
Jun Liu Weizhuo Zhang Zhenlin Li Hesong Jin Wei Liu Luping Tang |
author_sort |
Jun Liu |
title |
Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system |
title_short |
Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system |
title_full |
Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system |
title_fullStr |
Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system |
title_full_unstemmed |
Investigation of using limestone calcined clay cement (LC3) in engineered cementitious composites: The effect of propylene fibers and the curing system |
title_sort |
investigation of using limestone calcined clay cement (lc3) in engineered cementitious composites: the effect of propylene fibers and the curing system |
publisher |
Elsevier |
series |
Journal of Materials Research and Technology |
issn |
2238-7854 |
publishDate |
2021-11-01 |
description |
Limestone calcined clay cement (LC3) is a new type of low-carbon cement that can reduce energy consumption and carbon dioxide emissions while meeting the performance requirements of ordinary cement. In this study, polypropylene (PP) fibers were mixed into limestone calcined clay cement-based materials to make new low-carbon ECCs. In this study, a total of 24 sets of specimens were designed for 4 groups of curing ages and 6 types of mix ratios. The compressive load–displacement data were measured the compressive curve characteristics were analyzed then, a compressive constitutive model of the composites was deduced and obtained. Through XRD, SEM-EDS and MIP experiments, the reasons and laws of the compressive strength ranges of adding PP fibers and LC3 to engineered cementitious composites (LC3-PP-ECCs) are further explained from the perspective of the pore size, microstructures and hydration products. The results show that, after 28 days, the compressive strength values of LC3-PP-ECCs generally decreases with increasing PP fiber content and the combined effect of PP fibers and hydration products causes the compressive strength of LC3-ECCs with 0.5% PP fibers to drop sharply. In addition, the specimens showed better properties in terms of toughness, ductility and energy absorption. However, in the microstructures, the addition of PP fibers will cause more internal defects and flaws. This results of this study can provide some theoretical experience and technical support for the engineering application of LC3-ECCs. |
topic |
Engineered cementitious composites (ECCs) Limestone calcined clay cement (LC3) PP fibers Improved compressive constitutive model Microstructures Pore size and porosity |
url |
http://www.sciencedirect.com/science/article/pii/S2238785421010048 |
work_keys_str_mv |
AT junliu investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem AT weizhuozhang investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem AT zhenlinli investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem AT hesongjin investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem AT weiliu investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem AT lupingtang investigationofusinglimestonecalcinedclaycementlc3inengineeredcementitiouscompositestheeffectofpropylenefibersandthecuringsystem |
_version_ |
1717369053795844096 |