Majorization Inequalities via Peano's Representation of Hermite's Polynomial

The Peano's representation of Hermite polynomial and new Green functions are used to construct the identities related to the generalization of majorization type inequalities in discrete as well as continuous case. $\check{C}$eby$\check{s}$ev functional is used to find the bounds for new general...

Full description

Bibliographic Details
Main Authors: N. Latif, N. Siddique, J. Pecaric
Format: Article
Language:English
Published: Etamaths Publishing 2018-05-01
Series:International Journal of Analysis and Applications
Online Access:http://etamaths.com/index.php/ijaa/article/view/1672
id doaj-411a5b60661548a89fda1b92606d1d5d
record_format Article
spelling doaj-411a5b60661548a89fda1b92606d1d5d2021-08-26T13:44:38ZengEtamaths PublishingInternational Journal of Analysis and Applications2291-86392018-05-01163374399310Majorization Inequalities via Peano's Representation of Hermite's PolynomialN. Latif0N. Siddique1J. Pecaric2General Studies Department, Jubail Industrial College, Jubail Industrial City, Jubail, Kingdom of Saudi ArabiaGovt. College University, Faisalabad, PakistanFaculty of Textile Technology Zagreb, University of Zagreb, Prilaz Baruna Filipovica ´ 28A, 10000 Zagreb, CroatiaThe Peano's representation of Hermite polynomial and new Green functions are used to construct the identities related to the generalization of majorization type inequalities in discrete as well as continuous case. $\check{C}$eby$\check{s}$ev functional is used to find the bounds for new generalized identities and to develop the Gr$\ddot{u}$ss and Ostrowski type inequalities. Further more, we present exponential convexity together with Cauchy means for linear functionals associated with the obtained inequalities and give some applications.http://etamaths.com/index.php/ijaa/article/view/1672
collection DOAJ
language English
format Article
sources DOAJ
author N. Latif
N. Siddique
J. Pecaric
spellingShingle N. Latif
N. Siddique
J. Pecaric
Majorization Inequalities via Peano's Representation of Hermite's Polynomial
International Journal of Analysis and Applications
author_facet N. Latif
N. Siddique
J. Pecaric
author_sort N. Latif
title Majorization Inequalities via Peano's Representation of Hermite's Polynomial
title_short Majorization Inequalities via Peano's Representation of Hermite's Polynomial
title_full Majorization Inequalities via Peano's Representation of Hermite's Polynomial
title_fullStr Majorization Inequalities via Peano's Representation of Hermite's Polynomial
title_full_unstemmed Majorization Inequalities via Peano's Representation of Hermite's Polynomial
title_sort majorization inequalities via peano's representation of hermite's polynomial
publisher Etamaths Publishing
series International Journal of Analysis and Applications
issn 2291-8639
publishDate 2018-05-01
description The Peano's representation of Hermite polynomial and new Green functions are used to construct the identities related to the generalization of majorization type inequalities in discrete as well as continuous case. $\check{C}$eby$\check{s}$ev functional is used to find the bounds for new generalized identities and to develop the Gr$\ddot{u}$ss and Ostrowski type inequalities. Further more, we present exponential convexity together with Cauchy means for linear functionals associated with the obtained inequalities and give some applications.
url http://etamaths.com/index.php/ijaa/article/view/1672
work_keys_str_mv AT nlatif majorizationinequalitiesviapeanosrepresentationofhermitespolynomial
AT nsiddique majorizationinequalitiesviapeanosrepresentationofhermitespolynomial
AT jpecaric majorizationinequalitiesviapeanosrepresentationofhermitespolynomial
_version_ 1721193458891227136