Impact of Urbanization and Climate on Vegetation Coverage in the Beijing–Tianjin–Hebei Region of China

Worldwide urbanization leads to ecological changes around urban areas. However, few studies have quantitatively investigated the impacts of urbanization on vegetation coverage so far. As an important indicator measuring regional environment change, fractional vegetation cover (FVC) is widely used to...

Full description

Bibliographic Details
Main Authors: Qian Zhou, Xiang Zhao, Donghai Wu, Rongyun Tang, Xiaozheng Du, Haoyu Wang, Jiacheng Zhao, Peipei Xu, Yifeng Peng
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/20/2452
Description
Summary:Worldwide urbanization leads to ecological changes around urban areas. However, few studies have quantitatively investigated the impacts of urbanization on vegetation coverage so far. As an important indicator measuring regional environment change, fractional vegetation cover (FVC) is widely used to analyze changes in vegetation in urban areas. In this study, on the basis of a partial derivative model, we quantified the effect of temperature, precipitation, radiation, and urbanization represented as nighttime light on vegetation coverage changes in the Beijing−Tianjin−Hebei (BTH) region during its period of rapid resident population growth from 2001 to 2011. The results showed that (1) the FVC of the BTH region varied from 0.20 to 0.26, with significant spatial heterogeneity. The FVC increased in small cities such as Cangzhou and in the Taihang Mountains, while it decreased in megacities with populations greater than 1 million, such as Beijing and Zhangjiakou Bashang. (2) The BTH region experienced rapid urbanization, with the area of artificial surface increasing by 18.42%. From the urban core area to the fringe area, the urbanization intensity decreased, but the urbanization rate increased. (3) Urbanization and precipitation had the greatest effect on FVC changes. Urbanization dominated the FVC changes in the expanded area, while precipitation had the greatest impacts on the FVC changes in the core area. For future studies on the major influencing factors of FVC changes, quantitative analysis of the contribution of urbanization to FVC changes in urban regions is crucial and will provide scientific perspectives for sustainable urban planning.
ISSN:2072-4292