Numerical modelling of thermocapillary deformation in a locally heated thin horizontal volatile liquid layer
The thermocapillary flow in a thin horizontal layer of viscous incompressible liquid with free surface is considered. The deformable liquid layer is locally heated. The problem of thermocapillary deformation of the locally heated horizontal liquid layer has been solved numerically for two-dimensiona...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/matecconf/20168400003 |
Summary: | The thermocapillary flow in a thin horizontal layer of viscous incompressible liquid with free surface is considered. The deformable liquid layer is locally heated. The problem of thermocapillary deformation of the locally heated horizontal liquid layer has been solved numerically for two-dimensional unsteady case. The lubrication approximation theory is used. Capillary pressure, viscosity and gravity are taken into account. Evaporating rate is supposed to be proportional to the temperature difference between the liquid surface and ambient. Heat transfer in the substrate is also simulated. The deformation of the free surface has been calculated for different values of the heating power and thickness of the liquid layer. Initially the liquid layer has flat surface and uniform temperature. The model predicts the thermocapillary deformation of the liquid surface and the formation of the thin residual layer of the liquid. |
---|---|
ISSN: | 2261-236X |