Pairs of Function Spaces and Exponential Dichotomy on the Real Line

<p/> <p>We provide a complete diagram of the relation between the admissibility of pairs of Banach function spaces and the exponential dichotomy of evolution families on the real line. We prove that if <inline-formula><graphic file="1687-1847-2010-347670-i1.gif"/>&l...

Full description

Bibliographic Details
Main Author: Sasu AdinaLumini&#355;a
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2010/347670
Description
Summary:<p/> <p>We provide a complete diagram of the relation between the admissibility of pairs of Banach function spaces and the exponential dichotomy of evolution families on the real line. We prove that if <inline-formula><graphic file="1687-1847-2010-347670-i1.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-347670-i2.gif"/></inline-formula> are two Banach function spaces with the property that either <inline-formula><graphic file="1687-1847-2010-347670-i3.gif"/></inline-formula> or <inline-formula><graphic file="1687-1847-2010-347670-i4.gif"/></inline-formula>, then the admissibility of the pair <inline-formula><graphic file="1687-1847-2010-347670-i5.gif"/></inline-formula> implies the existence of the exponential dichotomy. We study when the converse implication holds and show that the hypotheses on the underlying function spaces cannot be dropped and that the obtained results are the most general in this topic. Finally, our results are applied to the study of exponential dichotomy of <inline-formula><graphic file="1687-1847-2010-347670-i6.gif"/></inline-formula>-semigroups.</p>
ISSN:1687-1839
1687-1847