Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense„ equ...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/20/4/901 |
id |
doaj-40d7488ead5f40c3948e79720d97fb5d |
---|---|
record_format |
Article |
spelling |
doaj-40d7488ead5f40c3948e79720d97fb5d2020-11-25T01:13:39ZengMDPI AGInternational Journal of Molecular Sciences1422-00672019-02-0120490110.3390/ijms20040901ijms20040901Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein ToxicityStefano Thellung0Alessandro Corsaro1Mario Nizzari2Federica Barbieri3Tullio Florio4Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, ItalySezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, ItalySezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, ItalySezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, ItalySezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, ItalyThe aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense„ equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.https://www.mdpi.com/1422-0067/20/4/901neurodegenerative diseasesprotein misfoldingautophagymTORrapamycin |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stefano Thellung Alessandro Corsaro Mario Nizzari Federica Barbieri Tullio Florio |
spellingShingle |
Stefano Thellung Alessandro Corsaro Mario Nizzari Federica Barbieri Tullio Florio Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity International Journal of Molecular Sciences neurodegenerative diseases protein misfolding autophagy mTOR rapamycin |
author_facet |
Stefano Thellung Alessandro Corsaro Mario Nizzari Federica Barbieri Tullio Florio |
author_sort |
Stefano Thellung |
title |
Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity |
title_short |
Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity |
title_full |
Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity |
title_fullStr |
Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity |
title_full_unstemmed |
Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity |
title_sort |
autophagy activator drugs: a new opportunity in neuroprotection from misfolded protein toxicity |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2019-02-01 |
description |
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense„ equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential. |
topic |
neurodegenerative diseases protein misfolding autophagy mTOR rapamycin |
url |
https://www.mdpi.com/1422-0067/20/4/901 |
work_keys_str_mv |
AT stefanothellung autophagyactivatordrugsanewopportunityinneuroprotectionfrommisfoldedproteintoxicity AT alessandrocorsaro autophagyactivatordrugsanewopportunityinneuroprotectionfrommisfoldedproteintoxicity AT marionizzari autophagyactivatordrugsanewopportunityinneuroprotectionfrommisfoldedproteintoxicity AT federicabarbieri autophagyactivatordrugsanewopportunityinneuroprotectionfrommisfoldedproteintoxicity AT tullioflorio autophagyactivatordrugsanewopportunityinneuroprotectionfrommisfoldedproteintoxicity |
_version_ |
1725160852354498560 |