Cross Layer Optimization of Wireless Control Links in the Software-Defined LEO Satellite Network

The low earth orbit (LEO) satellite network can benefit from software-defined networking (SDN) by lightening forwarding devices and improving service diversity. In order to apply SDN into the network, however, reliable SDN control links should be associated from satellite gateways to satellites, wit...

Full description

Bibliographic Details
Main Authors: Woncheol Cho, Jihwan P. Choi
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8789425/
Description
Summary:The low earth orbit (LEO) satellite network can benefit from software-defined networking (SDN) by lightening forwarding devices and improving service diversity. In order to apply SDN into the network, however, reliable SDN control links should be associated from satellite gateways to satellites, with the wireless and mobile properties of the network taken into account. Since these characteristics affect both control link association and gateway power allocation, we define a new cross layer SDN control link problem. To the best of our knowledge, this is the first attempt to explore the cross layer control link problem for the software-defined satellite network. A logically centralized SDN control framework constrained by maximum total power is introduced to enhance gateway power efficiency for control link setup. Based on the power control analysis of the problem, a power-efficient control link algorithm is developed, which establishes low latency control links with reduced power consumption. Along with the sensitivity analysis of the proposed control link algorithm, numerical results demonstrate low latency and high reliability of control links established by the algorithm, ultimately suggesting the feasibility, both technical and economical, of the software-defined LEO satellite network.
ISSN:2169-3536