Decreased NPC1L1 expression in the liver from Chinese female gallstone patients

<p>Abstract</p> <p>Background</p> <p>Cholesterol gallstone disease is a very common disease in both industrialized and developing countries. Many studies have found that cholesterol gallstones are more common in women than men. The molecular mechanisms underlying the re...

Full description

Bibliographic Details
Main Authors: Zhang Sheng-Dao, Fei Jian, Wang Jian-Cheng, Wu Wei-Ze, Zhang Ru-Yuan, Cai Qu, Jiang Zhao-Yan, Cui Wei, Han Tian-Quan
Format: Article
Language:English
Published: BMC 2010-02-01
Series:Lipids in Health and Disease
Online Access:http://www.lipidworld.com/content/9/1/17
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Cholesterol gallstone disease is a very common disease in both industrialized and developing countries. Many studies have found that cholesterol gallstones are more common in women than men. The molecular mechanisms underlying the relationship between female gallstone disease and hepatic sterol transporters are still undergoing definition and have not been evaluated in humans.</p> <p>Aims</p> <p>The aim of this study is to probe for underlying hepatic molecular defects associated with development of gallstones in female.</p> <p>Methods/Results</p> <p>Fifty-seven nonobese, normolipidemic Chinese female gallstone patients (GS) were investigated with 12 age- and body mass index-matched female gallstone-free controls (GSF). The bile from the female GS had higher cholesterol saturation than that from the female GSF. The hepatic NPC1L1 mRNA levels were lower in female GS, correlated with SREBP2 mRNA. NPC1L1 downregulation was confirmed at protein levels. Consistently, immunohistochemistry showed decreased NPC1L1 expression in female GS.</p> <p>Conclusions</p> <p>The decreased hepatic NPC1L1 levels in female GS might indicate a downregulated reabsorption of biliary cholesterol in the liver, which, in turn, leads to the cholesterol supersaturation of bile. Our data are consistent with the possibility that hepatic NPC1L1 may be mediated by SREBP2.</p>
ISSN:1476-511X