Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneou...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-273X/10/7/1050 |
id |
doaj-407d27b9f7e548b382985fd67ec72129 |
---|---|
record_format |
Article |
spelling |
doaj-407d27b9f7e548b382985fd67ec721292020-11-25T02:32:38ZengMDPI AGBiomolecules2218-273X2020-07-01101050105010.3390/biom10071050Deamidated Human Triosephosphate Isomerase is a Promising Druggable TargetSergio Enríquez-Flores0Luis Antonio Flores-López1Itzhel García-Torres2Ignacio de la Mora-de la Mora3Nallely Cabrera4Pedro Gutiérrez-Castrellón5Yoalli Martínez-Pérez6Gabriel López-Velázquez7Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoDepartamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoHospital General Dr. Manuel Gea González, Mexico City 14080, MexicoUnidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoTherapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the <i>tim</i> gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.https://www.mdpi.com/2218-273X/10/7/1050protein structuretriosephosphate isomeraseGlycolysisAGEsSARS-CoV-2omeprazole |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sergio Enríquez-Flores Luis Antonio Flores-López Itzhel García-Torres Ignacio de la Mora-de la Mora Nallely Cabrera Pedro Gutiérrez-Castrellón Yoalli Martínez-Pérez Gabriel López-Velázquez |
spellingShingle |
Sergio Enríquez-Flores Luis Antonio Flores-López Itzhel García-Torres Ignacio de la Mora-de la Mora Nallely Cabrera Pedro Gutiérrez-Castrellón Yoalli Martínez-Pérez Gabriel López-Velázquez Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target Biomolecules protein structure triosephosphate isomerase Glycolysis AGEs SARS-CoV-2 omeprazole |
author_facet |
Sergio Enríquez-Flores Luis Antonio Flores-López Itzhel García-Torres Ignacio de la Mora-de la Mora Nallely Cabrera Pedro Gutiérrez-Castrellón Yoalli Martínez-Pérez Gabriel López-Velázquez |
author_sort |
Sergio Enríquez-Flores |
title |
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target |
title_short |
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target |
title_full |
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target |
title_fullStr |
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target |
title_full_unstemmed |
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target |
title_sort |
deamidated human triosephosphate isomerase is a promising druggable target |
publisher |
MDPI AG |
series |
Biomolecules |
issn |
2218-273X |
publishDate |
2020-07-01 |
description |
Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the <i>tim</i> gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer. |
topic |
protein structure triosephosphate isomerase Glycolysis AGEs SARS-CoV-2 omeprazole |
url |
https://www.mdpi.com/2218-273X/10/7/1050 |
work_keys_str_mv |
AT sergioenriquezflores deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT luisantoniofloreslopez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT itzhelgarciatorres deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT ignaciodelamoradelamora deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT nallelycabrera deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT pedrogutierrezcastrellon deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT yoallimartinezperez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget AT gabriellopezvelazquez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget |
_version_ |
1724818794152460288 |