Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target

Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneou...

Full description

Bibliographic Details
Main Authors: Sergio Enríquez-Flores, Luis Antonio Flores-López, Itzhel García-Torres, Ignacio de la Mora-de la Mora, Nallely Cabrera, Pedro Gutiérrez-Castrellón, Yoalli Martínez-Pérez, Gabriel López-Velázquez
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/10/7/1050
id doaj-407d27b9f7e548b382985fd67ec72129
record_format Article
spelling doaj-407d27b9f7e548b382985fd67ec721292020-11-25T02:32:38ZengMDPI AGBiomolecules2218-273X2020-07-01101050105010.3390/biom10071050Deamidated Human Triosephosphate Isomerase is a Promising Druggable TargetSergio Enríquez-Flores0Luis Antonio Flores-López1Itzhel García-Torres2Ignacio de la Mora-de la Mora3Nallely Cabrera4Pedro Gutiérrez-Castrellón5Yoalli Martínez-Pérez6Gabriel López-Velázquez7Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoDepartamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoHospital General Dr. Manuel Gea González, Mexico City 14080, MexicoUnidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, MexicoGrupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, MexicoTherapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the <i>tim</i> gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.https://www.mdpi.com/2218-273X/10/7/1050protein structuretriosephosphate isomeraseGlycolysisAGEsSARS-CoV-2omeprazole
collection DOAJ
language English
format Article
sources DOAJ
author Sergio Enríquez-Flores
Luis Antonio Flores-López
Itzhel García-Torres
Ignacio de la Mora-de la Mora
Nallely Cabrera
Pedro Gutiérrez-Castrellón
Yoalli Martínez-Pérez
Gabriel López-Velázquez
spellingShingle Sergio Enríquez-Flores
Luis Antonio Flores-López
Itzhel García-Torres
Ignacio de la Mora-de la Mora
Nallely Cabrera
Pedro Gutiérrez-Castrellón
Yoalli Martínez-Pérez
Gabriel López-Velázquez
Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
Biomolecules
protein structure
triosephosphate isomerase
Glycolysis
AGEs
SARS-CoV-2
omeprazole
author_facet Sergio Enríquez-Flores
Luis Antonio Flores-López
Itzhel García-Torres
Ignacio de la Mora-de la Mora
Nallely Cabrera
Pedro Gutiérrez-Castrellón
Yoalli Martínez-Pérez
Gabriel López-Velázquez
author_sort Sergio Enríquez-Flores
title Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
title_short Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
title_full Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
title_fullStr Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
title_full_unstemmed Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target
title_sort deamidated human triosephosphate isomerase is a promising druggable target
publisher MDPI AG
series Biomolecules
issn 2218-273X
publishDate 2020-07-01
description Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the <i>tim</i> gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.
topic protein structure
triosephosphate isomerase
Glycolysis
AGEs
SARS-CoV-2
omeprazole
url https://www.mdpi.com/2218-273X/10/7/1050
work_keys_str_mv AT sergioenriquezflores deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT luisantoniofloreslopez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT itzhelgarciatorres deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT ignaciodelamoradelamora deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT nallelycabrera deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT pedrogutierrezcastrellon deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT yoallimartinezperez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
AT gabriellopezvelazquez deamidatedhumantriosephosphateisomeraseisapromisingdruggabletarget
_version_ 1724818794152460288