Observation of isoscalar multipole strengths in exotic doubly-magic 56Ni in inelastic α scattering in inverse kinematics
The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GA...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2015-12-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269315008199 |
Summary: | The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GANIL facility. The centroid of the ISGMR has been obtained at Ex=19.1±0.5 MeV. Evidence for the low-lying part of the ISGDR has been found at Ex=17.4±0.7 MeV. The strength distribution for the dipole mode shows similarity with the prediction from the Hartree–Fock (HF) based random-phase approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics. |
---|---|
ISSN: | 0370-2693 1873-2445 |