Cyber-Enabled Intelligence Control and Security Optimization for Complex Microgrid Networks Transient Frequency Stability Analysis of Power Systems considering Photovoltaic Grid Connection

In view of the photovoltaic grid-connected power system, the transient frequency stability of the system is analyzed in this paper. First, the photovoltaic grid-connected power system was modeled and analyzed. On this basis, the maximum frequency deviation is used as the index to determine the inter...

Full description

Bibliographic Details
Main Authors: Jun Wu, Xiangyu Xing, Chen Wu, Baolin Li, Wei Huang, Peiying Gan, Hui Zhou
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/5641596
Description
Summary:In view of the photovoltaic grid-connected power system, the transient frequency stability of the system is analyzed in this paper. First, the photovoltaic grid-connected power system was modeled and analyzed. On this basis, the maximum frequency deviation is used as the index to determine the interval in which the system accommodates the maximum photovoltaic capacity, and the influence of frequency stability of the high-permeability photovoltaic high disturbance system is studied. Second, the evaluation and prediction methods of frequency dynamic characteristics of photovoltaic access nodes based on surface fitting are proposed, and the critical values of high penetration photovoltaic access for different grid points are given. Finally, an improvement measure based on the optimization of the frequency modulation parameters of large-capacity units is proposed, and the effectiveness of the proposed method in improving the transient frequency stability of the system after photovoltaic access is verified by the IEEE 39-standard system.
ISSN:1076-2787
1099-0526