A Simplified 3D Model of Whole Heart Electrical Activity and 12-Lead ECG Generation

We present a computationally efficient three-dimensional bidomain model of torso-embedded whole heart electrical activity, with spontaneous initiation of activation in the sinoatrial node, incorporating a specialized conduction system with heterogeneous action potential morphologies throughout the h...

Full description

Bibliographic Details
Main Authors: Siniša Sovilj, Ratko Magjarević, Nigel H. Lovell, Socrates Dokos
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2013/134208
Description
Summary:We present a computationally efficient three-dimensional bidomain model of torso-embedded whole heart electrical activity, with spontaneous initiation of activation in the sinoatrial node, incorporating a specialized conduction system with heterogeneous action potential morphologies throughout the heart. The simplified geometry incorporates the whole heart as a volume source, with heart cavities, lungs, and torso as passive volume conductors. We placed four surface electrodes at the limbs of the torso: , , and and six electrodes on the chest to simulate the Einthoven, Goldberger-augmented and precordial leads of a standard 12-lead system. By placing additional seven electrodes at the appropriate torso positions, we were also able to calculate the vectorcardiogram of the Frank lead system. Themodel was able to simulate realistic electrocardiogram (ECG) morphologies for the 12 standard leads, orthogonal , , and leads, as well as the vectorcardiogram under normal and pathological heart states. Thus, simplified and easy replicable 3D cardiac bidomain model offers a compromise between computational load and model complexity and can be used as an investigative tool to adjust cell, tissue, and whole heart properties, such as setting ischemic lesions or regions of myocardial infarction, to readily investigate their effects on whole ECG morphology.
ISSN:1748-670X
1748-6718